Firma dell’accordo di collaborazione tra Brianzacque, gestore unico del servizio idrico integrato sul territorio, e il Consiglio Nazionale delle Ricerche (CNR) – Istituto di Ricerca sulle Acque (IRSA)
CONTINUO O DISCRETO: MICROSPIE IN ASCOLTO DEL RUMORE DELLO SPAZIOTEMPO PER SCOPRIRLO
COMUNICATO STAMPA. HUMOR (Heisenberg Uncertainty Measured with Opto-mechanical Resonators), il primo esperimento ad aver ideato e realizzato un modo completamente nuovo di sondare lo spaziotempo a dimensioni estremamente piccole, pubblica oggi sulla prestigiosa rivista internazionale Nature Communications i primi importanti risultati, che pongono un nuovo limite superiore all’esplorazione dello spaziotempo a livelli microscopici. La misura di altissima precisione è stata possibile grazie all’utilizzo di “microspie” sensibilissime, in grado di ascoltare il flebile rumore delle fluttuazioni dello spaziotempo.
“Usando esperimenti "da tavolo" a bassissime energie, - spiega Francesco Marin, ricercatore di HUMOR, professore all’Università di Firenze, associato a INFN, LENS e CNR-Istituto Nazionale di Ottica - siamo, infatti, riusciti a effettuare, per mezzo di laser e sensori elettromagnetici, misure di spostamenti e tempi con una precisione elevatissima, rilevando le microscopiche vibrazioni di oscillatori di diverse dimensioni e masse, da qualche nanogrammo fino a qualche milligrammo”.
Questi strumenti non hanno ancora osservato una granulosità dello spaziotempo, ma sono riusciti a porre nuovi limiti e ora molti scienziati sono al lavoro per migliorare la strumentazione e spingersi a scale sempre più piccole. “La strada per una chiara comprensione del tessuto spaziotemporale che ci circonda è ancora lunga, - sottolinea Marin - ma i risultati attuali possono già essere utilizzati per verificare le previsioni delle teorie che mirano a unificare gravità e fisica quantistica, costituendo un importante punto di riferimento e di partenza per l'analisi sperimentale di queste problematiche”. HUMOR apre quindi all’affascinate prospettiva di poter testare uno dei punti-chiave delle più avanzate teorie, come ad esempio la teoria delle stringhe: cioè se il tempo e lo spazio, che a noi appaiono continui, siano in realtà fatti di minimi intervalli di spazio e tempo. D’altro canto, rispondere alla questione se spazio e tempo siano continui o discreti è una delle più grandi sfide, con imprevedibili implicazioni. Inoltre, una qualche formulazione della teoria quantistica della gravità potrebbe forse essere candidata a spiegare l'origine dell'intero universo e quindi questi limiti pongono vincoli utili alla costruzione della teoria giusta.
HUMOR è frutto di una collaborazione tra Istituto Nazionale di Fisica Nucleare (INFN), Consiglio Nazionale delle Ricerche (CNR), European Laboratory for Non-Linear Spectroscopy (LENS), le Università di Firenze, Trento e Camerino e la Fondazione Bruno Kessler (FBK).
Come funziona
L’esperimento HUMOR ha alla base micro-oscillatori meccanici molto raffinati, costruiti con micro-litografia su wafer di silicio (tecniche simili a quelle che vengono usate per costruire i processori dei computer), con spessori micrometrici o nanometrici (millesimi o milionesimi di millimetro). La forma degli oscillatori è studiata per isolarli al meglio dall’ambiente esterno. Vengono poi raffreddati fino a pochi gradi dallo zero assoluto, per limitare le vibrazioni indotte dal calore. In questo modo si raggiunge un’elevatissima purezza dell’oscillazione: una volta eccitati, riescono a vibrare oltre un milione di volte prima che l’ampiezza di oscillazione diminuisca significativamente. Il movimento viene misurato con fasci laser e sensori elettrostatici a basso rumore, con sensibilità allo spostamento comparabile alle dimensioni del nucleo atomico. Lo scopo è misurare quanto il periodo di oscillazione rimanga stabile durante il moto, anche ad ampiezze relativamente grandi. I ricercatori di HUMOR hanno, infatti, mostrato che diverse teorie, che mirano a unificare in una descrizione unitaria relatività generale e meccanica quantistica, hanno come conseguenza la previsione di una variazione del periodo quando l’oscillatore esplora nel suo moto regioni di spazio più grandi, come se la molla di richiamo si irrigidisse. L’esperimento arriva a misurare variazioni del periodo di qualche parte su un miliardo, prima di arrivare ad ampiezze tali che la struttura stessa della materia (del materiale, silicio cristallino e nitruro di silicio, con cui sono costruiti gli oscillatori) venga stressata al punto da rispondere in maniera anomala e mascherare quindi eventuali effetti riconducibili a modifiche della meccanica quantistica dovute alla gravità. I risultati migliorano comunque i precedenti limiti superiori a effetti di gravità quantistica (ovvero, al parametro che quantifica di quanto vada deformata la meccanica quantistica tradizionale) di molti ordini di grandezza. Ad esempio, i limiti ottenuti dalla spettroscopia di precisione dell’atomo di idrogeno erano oltre 20 ordini di grandezza meno stringenti. In effetti, HUMOR è il primo esperimento realizzato appositamente per studiare possibili effetti di gravità quantistica, ed è entrato in una regione in cui i risultati cominciano a essere significativi. La prossima sfida è raffreddare ulteriormente un oscillatore, fino a meno di un millesimo di grado dallo zero assoluto, sfruttando la luce del laser. A questa temperatura il comportamento dell’oscillatore è marcatamente quantistico (ovvero, mostra caratteristiche non spiegabili con la fisica classica, come l’impossibilità di essere completamente localizzato). Sarà possibile quindi evidenziare in maniera più diretta eventuali anomalie riconducibili a effetti di gravità quantistica. Allo stesso tempo, si potrà studiare il confine tra la fisica classica, normalmente usata per descrivere il comportamento di oggetti meccanici, e quella quantistica, che domina l'universo alla scala microscopica, su distanze atomiche (al di sotto di un miliardesimo di metro) e indagare se, come suppongono alcune teorie, la gravità giochi un ruolo fondamentale proprio in questa transizione.
Il contesto teorico
I continui progressi della fisica permettono di conoscere sempre più a fondo l'universo, e anche di disporre di nuove tecnologie, ma allo stesso tempo ci pongono di fronte a domande sempre nuove. La principale questione aperta della fisica è conciliare le due teorie fisiche di maggior successo, la relatività generale di Einstein e la meccanica quantistica, che funzionano perfettamente, ma entro ambiti completamente diversi. La relatività generale spiega la gravitazione e l'universo a grande scala, astronomica e cosmologica, e allo stesso tempo ci ha permesso di realizzare GPS precisissimi. La meccanica quantistica spiega l'universo alla scala microscopica, su distanze atomiche (al di sotto di un miliardesimo di metro) o ancora più piccole, e la sua comprensione è alla base di tutti i dispositivi elettronici che usiamo quotidianamente.
Però nessuno sa come fare quando si devono applicare le due teorie contemporaneamente, ad esempio quando si deve spiegare che cosa succede attorno a un buco nero. O meglio, esistono tantissime teorie che aspirano a realizzare tale unificazione e a divenire la "teoria del tutto", ma nessuna di esse è convincente. E soprattutto non è chiaro come possa essere verificata sperimentalmente. Un aspetto comune di queste teorie è che lo spaziotempo cambi natura, diventi "granuloso", su lunghezze estremamente piccole, detta scala di Planck (10-35 metri, ovvero miliardi di miliardi di volte più piccole di un nucleo atomico). Le strade più comuni per realizzare il "microscopio" in grado di vedere su queste scale ultra-piccole sono scontrare particelle a energie sempre più elevate, come si fa al CERN di Ginevra, oppure osservare con sonde e telescopi fenomeni astrofisici ad alta energia. HUMOR ha invece ideato e realizzato un modo completamente nuovo di sondare lo spaziotempo a dimensioni estremamente piccole: grazie all’utilizzo di “microspie” sensibilissime, in grado di ascoltare il flebile rumore delle fluttuazioni dello spaziotempo.
Coastal and Shipping States Conduct Exercise Simulating Maritime Transport Emergency
QUANDO I NOMI PRENDONO IL POSTO DELLE MISURE
Ci sono studi in cui la fisica si sposa con la sociologia. Studi in cui i nomi prendono, ad esempio, il posto dei numeri. È il caso di una ricerca appena pubblicata sui Proceedings of the National Academy of Sciences (PNAS) - la rivista dell’Accademia delle Scienze USA - condotta da un gruppo di ricercatori del Dipartimento di fisica della Sapienza Università di Roma e dell’Istituto Nazionale di Fisica Nucleare (INFN). Si tratta di un’analisi dei nomi scelti per i bambini nati negli Stati Uniti dal 1910 al 2012, sulla base dei dati resi pubblici dall’ufficio statistico americano. “L’indagine ha consentito di stabilire come le correlazioni culturali fra gli Stati americani si siano modificate nel tempo, mostrando un drastico cambiamento nella parte finale del XX secolo”, spiega Enzo Marinari, fisico teorico della Sapienza e dell’INFN, tra gli autori della ricerca.
L’indagine è basata sull’uso di tecniche di analisi avanzate, matematiche e numeriche. Per un fisico è, infatti, normale analizzare dati sperimentali, per confermare o smentire una teoria, e fare predizioni future di un certo fenomeno. Quello che cambia in questo particolare studio è, però, la natura stessa dei dati sperimentali. “La nostra misura sono i nomi”, sottolinea Marinari. Nomi che raccontano storie. “Studiando la dinamica dei grandi nomi - riflette il fisico italiano - si può, infatti, osservare come mutano i rapporti tra le varie parti di un Paese, nel nostro caso gli Stati Uniti, e quali sono le influenze reciproche”. Dall’analisi dei dati emerge, ad esempio, che fino agli Anni settanta gli Stati del Nord, così come quelli del Sud, tendevano ad agire all’unisono, e fra i due gruppi non c’erano correlazioni degne di rilievo. Invece, nel periodo più recente ci sono stati notevoli cambiamenti, e sono emersi chiari legami fra i comportamenti della East Coast e della West Coast. “Stati anche geograficamente lontani, hanno iniziato a fare scelte simili - afferma Marinari -. Perché questo accada non possiamo, però, dirlo. Il nostro resta, infatti, uno studio da fisici, non da sociologi. Quello che noi facciamo - conclude Marinari - è analizzare ciò che succede, senza tuttavia interpretarlo. Un lavoro, quest’ultimo, che spetta ai sociologi”.
Continuo o discreto: microscopie in ascolto del rumore dello spaziotempo per scoprirlo
Pasquale Memmolo vince il “Best Poster Award” alla conferenza OSA’s Computational Optical Sensing and Imaging 2015
Mathematician to know: Emmy Noether
Noether's theorem is a thread woven into the fabric of the science.

We are able to understand the world because it is predictable. If we drop a rubber ball, it falls down rather than flying up. But more specifically: if we drop the same ball from the same height over and over again, we know it will hit the ground with the same speed every time (within vagaries of air currents). That repeatability is a huge part of what makes physics effective.
The repeatability of the ball experiment is an example of what physicists call “the law of conservation of energy.” An equivalent way to put it is to say the force of gravity doesn’t change in strength from moment to moment.
The connection between those ways of thinking is a simple example of a deep principle called Noether’s theorem: Wherever a symmetry of nature exists, there is a conservation law attached to it, and vice versa. The theorem is named for arguably the greatest 20th century mathematician: Emmy Noether.
“Noether's theorem to me is as important a theorem in our understanding of the world as the Pythagorean theorem,” says Fermilab physicist Christopher Hill, who wrote a book on the topic with Nobel laureate Leon Lederman.
So who was the mathematician behind Noether’s theorem?
The life of Noether
Amalie Emmy Noether was born in Bavaria (now part of Germany) in 1882. She earned her doctorate in mathematics in 1907 from the University of Erlangen, which was a socially progressive institution for its day. She stayed at Erlangen to teach for several years, though without pay, as women were not technically allowed to teach at universities in Germany at the time.
One of the leading mathematicians of the age, David Hilbert, invited her to join him at the University of Göttingen, where she remained from 1916 until 1933. Liberalized laws in Germany following World War I allowed Noether to be granted a teaching position, but she was still paid only a small amount for her teaching work.
In 1933, the Nazi regime fired all Jewish professors and followed the next year by firing all female professors. A Jewish woman, Noether left Germany for the United States. She worked as a visiting professor at Bryn Mawr College, but her time in America was short. She died in 1935 at age 53, from complications following surgery.
Many of the leading male mathematicians and physicists of the day eulogized her, including Albert Einstein, who wrote in the New York Times, “However inconspicuously the life of these individuals runs its course, none the less the fruits of their endeavors are the most valuable contributions which one generation can make to its successors.”
Physicists tend to know her work primarily through her 1918 theorem. But mathematicians are familiar with a variety of Noether theorems, Noetherian rings, Noether groups, Noether equations, Noether modules and many more.
Over the course of her career, Noether developed much of modern abstract algebra: the grammar and the syntax of math, letting us say what we need to in math and science. She also contributed to the theory of groups, which is another way to treat symmetries; this work has influenced mathematical side of quantum mechanics and superstring theory.
Noether and particle physics
Because their work relies on symmetry and conservation laws, nearly every modern physicist uses Noether’s theorem. It’s a thread woven into the fabric of the science, part of the whole cloth. Every time scientists use a symmetry or a conservation law, from the quantum physics of atoms to the flow of matter on the scale of the cosmos, Noether’s theorem is present. Noetherian symmetries answer questions like these: If you perform an experiment at different times or in different places, what changes and what stays the same? Can you rotate your experimental setup? Which properties of particles can change, and which are inviolable?
Conservation of energy comes from time-shift symmetry: You can repeat an experiment at different times, and the result is the same. Conservation of momentum comes from space-shift symmetry: You can perform the same experiment in different places, and it comes out with the same results. Conservation of angular momentum, which when combined with the conservation of energy under the force of gravity explains the Earth’s motion around the sun, comes from symmetry under rotations. And the list goes on.
The greatest success of Noether’s theorem came with quantum physics, and especially the particle physics revolution that rose after Noether’s death. Many physicists, inspired by Noether’s theorem and the success of Einstein’s general theory of relativity, looked at geometrical descriptions and mathematical symmetries to describe the new types of particles they were discovering.
“It's definitely true that Noether's theorem is part of the foundation on which modern physics is built,” says physicist Natalia Toro of the Perimeter Institute and the University of Waterloo. “We apply it every day to deep and well-tested principles like conservation of energy and momentum.”
According to the law of conservation of electric charge, the total amount of electric charge going into an experiment must be the same as what comes out, even if particle types change or if matter hits antimatter and is annihilated. That law has the same symmetry that a circle has. A perfect circle can be rotated around its center by any angle and it looks the same; the same math describes the quantum mechanical property of an electron. If the amount of that rotation can change from place to place, the symmetry of a circle yields the entire theory of electromagnetism, which governs everything from the generation of electricity to the structure of atoms to matter on cosmic scales. In that way, Noether takes us from a simple symmetry to the world we know.
“Noether's theorem has even greater power than that,” Toro says, “in helping us to organize our thinking when exploring aspects of the universe where we don't yet know the basic laws. That's a tall order, and as we seek experimental answers to these questions, symmetries and conservation laws—tightly linked by Noether's theorem—are one of the few theoretical tools that we have to guide us.”
Quartetto galattico di Hickson
