AL VIA EXANEST, PROGETTO EUROPEO DI SUPERCALCOLO

exanest kickoffmtgParte in questi primi giorni di dicembre 2015 ExaNeSt, European Exascale System Interconnect and Storage, uno dei 21 progetti europei Future Emerging Technologies (FET) High Performance Computing (HPC) per lo sviluppo di sistemi di calcolo ad alte prestazioni, selezionati nell'ambito del programma di ricerca Horizon 2020 in seguito alla call for proposals Towards exascale high performance computing.
I partner del progetto, tra cui l’INFN che vi partecipa con la sezione di Roma presso Sapienza Università di Roma e il CNAF - il centro nazionale dell’INFN per la ricerca e lo sviluppo nelle tecnologie informatiche e telematiche -, si sono dati appuntamento in questi giorni a Heraklion, nell'isola greca di Creta, in occasione del kick-off meeting organizzato dalla Foundation for Research & Technology-Hellas (FORTH), coordinatrice del progetto, per discutere e programmare le attività future. ExaNeSt, cui per l'Italia partecipano anche l'Istituto Nazionale di Astrofisica (INAF) e le società eXact LAB e il ramo italiano di ENGINSOFT, ha una durata di tre anni, già interamente finanziati con circa 8,5 milioni di euro. "Alla fine dei tre anni - spiega Piero Vicini, coordinatore INFN di ExaNeSt - avremo un prototipo, da utilizzare per testare programmi per calcoli di fisica teorica computazionale o simulazioni di sistemi complessi, tra i quali un modello ridotto e semplificato del funzionamento del cervello umano". Settori in cui l'INFN ha una tradizione consolidata, come dimostra il recente ingresso del consorzio WAVESCALES, a guida INFN, nello Human Brain Project (HBP), progetto europeo per lo studio del cervello.
Lo studio delle reti è uno dei settori di punta in cui l'Unione Europea ha deciso d'investire maggiormente nei prossimi anni. Basti pensare che, secondo le previsioni di Google Emea (Europa, Medio Oriente e Africa), entro il 2020 le persone connesse alla Rete sono destinate quasi a raddoppiare, passando dagli attuali 2,8 miliardi, ciascuna con due o tre dispositivi, a cinque miliardi nei prossimi cinque anni, con l'impiego di cinque o sei dispositivi pro capite. Un balzo che richiederà anche lo sviluppo di supercomputer, formati cioè da centinaia di migliaia di microprocessori capaci di operare in parallelo.
"Uno degli obiettivi di ExaNeSt - sottolinea Piero Vicini - è far sì che questi processori, tra centomila e un milione, siano in grado, da un lato di archiviare e accedere ai dati del calcolo nel minor tempo possibile e, dall'altro, di parlare tra loro in modo efficiente, e con il minimo dispendio energetico. La sfida - conclude Vicini - è ambiziosa: raggiungere in un singolo sistema una potenza di calcolo di un miliardo di miliardi di operazioni al secondo, una cifra a 18 zeri".

Continue reading

The next gamma-ray eye on the sky

Scientists have successfully tested the first prototype camera for the Cherenkov Telescope Array.

Telescope arrays VERITAS, HESS and MAGIC have spied active supermassive black holes, the remnants of the explosions of massive stars, binary star systems, and galaxies actively churning out new stars.

This is possible thanks to what all of these cosmic objects have in common: They are all sources of high-energy gamma rays. VERITAS, HESS and MAGIC all look for the optical light produced when those gamma rays interact with Earth’s atmosphere.

One gamma-ray source that continues to elude these powerful telescopes is the brightest electromagnetic event known to occur in the universe: a gamma-ray burst. But a new telescope array currently under development might be able to catch one.

The Cherenkov Telescope Array, or CTA, will cover a substantially larger area on the ground, making it an enormous “bucket” to collect incoming gamma-ray-produced radiation. It will also be able to collect data during almost twice as many hours per year as current arrays.

The array will study the entire range of gamma-ray sources. It also has the capability to detect the annihilation signature of dark matter particles.

“We’re really hoping to find something new, some new type of high-energy astrophysical phenomenon,” says Rene Ong, the CTA consortium co-spokesperson.

Scientists successfully operated the first CTA prototype camera in late November. The full array is scheduled to start running in the 2020s.

The usefulness of gamma rays

Gamma rays are almost ideal messengers of high-energy particle astrophysics. They are created in the most energetic processes in the universe. And, like all other forms of light, they are electrically neutral and thus aren’t buffeted by galactic magnetic fields as they travel through space. This means scientists can use them to point back to their sources.

The drawback is that these messengers can’t make it through Earth’s atmosphere. Instead, they interact and produce a shower of lower-energy particles.

If some of those are traveling at a velocity faster than the speed of light in the gaseous medium of the atmosphere, they will create flashes of light peaking between blue and ultraviolet, akin to a sonic boom following a supersonic jet. This light is called Cherenkov radiation, and it’s what ground-based high-energy gamma-ray telescopes actually detect.

VERITAS in Arizona, HESS in Namibia, and MAGIC on the Canary island of La Palma are arrays of optical telescopes that have been detecting this light for about a decade. VERITAS contains four of these scopes, HESS has five, and MAGIC has two. The weak light reflects off each segmented primary mirror and is funneled to a “camera.” Each telescope’s  camera is made of hundreds to thousands of photomultiplier tubes which convert the incoming photons into electrical signals.

With the next-generation CTA, scientists hope to catch a gamma-ray burst with a ground-based telescope array for the first time. They want to know the underlying physics of these blasts, the sources of which are thought to be located millions to billions of light-years away.

Scientists have seen gamma-ray bursts with space-based instruments, such as the Fermi Gamma-Ray Space Telescope and Swift. But only a ground-based array could detect their highest-energy gamma rays, those above 100 billion electronvolts. And a large ground-based array such as the CTA, which will cover 10 square kilometers in the south and 1 square kilometer in the north, would be able to capture much more information.

Building the CTA

An international consortium of nearly 1300 researchers from 31 countries is working toward building the CTA. The array will focus on a wider gamma ray energy range than the currently operating instruments—seeing between 20 billion electronvolts and 300 trillion electronvolts—and will do so with 10 times the sensitivity.

The CTA will consist of two detection sites on Earth, one in each hemisphere. At Cerro Paranal in Chile's Atacama Desert, approximately 100 telescopes spread across an area of about 10 square kilometers will scan the Southern sky. On the Spanish island of La Palma, some 19 telescopes will watch the Northern sky. The CTA Observatory is in the final negotiations with representatives from both locations to finalize the agreements to host the arrays.

Both the northern and southern arrays will each have four large telescopes, each 23 meters wide and spaced about 100 meters apart from one another, clustered toward the center of the array. Moving outward will be telescopes in the 10 to 12 meters range. The northern array will have 15 of these medium-sized telescopes, while the southern array will have 25. The Cerro Paranal location additionally will host approximately 70 4-meter-wide telescopes, farther out from the array’s center.

The 70 small telescopes will use new detectors made of silicon. These have several advantages over the current design, says University of Oxford graduate student Andrea De Franco, “but the most sexy for us is they can resist bright night-sky background.”

That means they can detect Cherenkov light even in bright moonlight, something VERITAS, HESS and MAGIC cannot do. This new technology will let the CTA observatory operate for about 16 to 17 percent of the hours in a year; current arrays can observe during only about 10 percent.

Work in progress

CTA is in the development phase right now, meaning the consortium members are developing and testing the hardware, verifying how to deploy and operate the instruments, and simulating the best layout of those telescopes at each site.

In October, the CTA project began constructing the large telescope prototype at La Palma.

Two medium-sized telescope prototypes are also under construction: A two-mirror design with a 10-meter primary mirror is being built in southern Arizona; a prototype of a single-mirror, 12-meter-wide design is in testing in Berlin, and its camera is nearly complete.

All three small-sized prototypes are well underway. A single-mirror, 4-meter design has been constructed in Krakow, Poland; a two-mirror, 4-meter design is operational near Mount Etna, Italy; and another two-mirror, 4-meter design was just inaugurated December 1 outside of Paris.

De Franco has spent the last two years building and testing the camera for the Paris-based prototype in addition to helping commission it before the inauguration. On November 26, he and his colleagues proved the design was working—even with the City of Light nearby. The camera recorded Cherenkov light, making it the first CTA prototype fully working and observing.

De Franco says it’s more likely that the light was part of a particle shower caused by an incoming cosmic ray rather than a gamma ray. But even if it was, this detection marked yet another step forward along the path to build science’s next gamma-ray eye scouring the sky.

The next step will be to construct and deploy the pre-production telescopes at the actual array sites.

“Ideally, [each of these] is identical to the final production telescope,” says CTA Project Manager Christopher Townsley. “It’s just that we will always learn something from putting it in the desert.”

Members of the CTA project expect to begin this phase in spring 2017, depending on the availability of funding.

Once the pre-production telescopes are operational, data collection can begin, though it won’t be anywhere near the quality expected from the full observatory. According to the current timeline, most of the telescopes at both arrays will be complete in 2020 or 2021.

At that point, the data will surpass what today’s best gamma-ray instruments can obtain. And CTA will only get better from there.

Continue reading

In search of the perfect term paper writing services?

To find the best term paper writing services?

Purchase distinctive, nicely-authored papers at Samedayessay to get it within 24 hours

Samedayessay presents among the best term paper writing services you will find. They could accomplish this for the reason that there is a fantastic staff members, discount rates and plenty of absolutely free capabilities.write my college essay Each customer can get 2 many days of 100 % free revision (irrespective of on the length of a papers), no cost label, useful resource site and plagiarism check. Continue reading

Share

A Changing World

Nuclear techniques are being used in polar and mountainous regions to study climate change and its impact on the quality of land, water and ecosystems in order to better conserve and manage these resources. Continue reading

Bando n.11/2015

E' indetto un concorso per titoli e colloquio volto al conferimento di 11 contratti per borse di studio della durata di dodici mesi, non rinnovabili automaticamente, a neo laureati che abbiano conseguito il titolo da meno di due anni. La borsa di studio inoltre, anche a seguito di eventuali rinnovi, non potrà comunque  avere  una durata complessiva superiore a quattro anni come previsto dall'art. 2 comma 2 della Legge del Regolamento per il Conferimento di Borse di Studio dell'Agenzia Spaziale Italiana. 
Italiano
Continue reading

Testimoni di una giovane Via Lattea

milky_wayGli astronomi hanno studiato in dettaglio l’ammasso globulare E 3, una sorta di testimone del periodo primordiale della nostra galassia. I risultati di questo studio, pubblicati su Astronomy & Astrophysics, hanno fornito una serie di sorprese e suggeriscono che l’oggetto potrebbe essere correlato con altri ammassi vecchi implicando che sia stato catturato dalla Via Lattea in un passato remoto Continue reading

E dopo la Nebulosa Medusa?

Crediti: Wide Field Optical: Focal Pointe Observatory/B.Franke, Inset X-ray: NASA/CXC/MSFC/D.Swartz et al, Inset Optical: DSS, SARAL'esplosione che ha creato la nebulosa potrebbe avere generato un oggetto particolare che si trova sul bordo meridionale del residuo, denominato CXOU J061705.3 + 222127, o J0617: si tratterebbe di stella di neutroni in rapida rotazione, o pulsar Continue reading

LISA Pathfinder, il viaggio continua

"LISA Pathfinder continua il suo viaggio", parafrasando il professor Stefano Vitale - principal investigator dei sensori inerziali  della missione ESA dedicata allo studio delle onde gravitazionali.
Italiano
Continue reading