Riformare il «pre-ruolo» per i ricercatori: ce lo chiede l’Europa!

Fonte: Scuola 24 di Antonio Bonatesta* Horizon 2020 è il programma dedicato dall’Unione Europea a innovazione e ricerca nel settennato 2013-2020. Secondo i dati resi disponibili dall’European Research Ranking, nel corso del suo primo anno (2014), i finanziamenti concessi all’Italia ammontano a circa 357 milioni di euro, per un totale di quasi 600 progetti che… Continue reading

Mendeleev: il professore di chimica che tutti avremmo voluto

  Si chiamava Dmitrij Ivanovich Mendeleev, nacque in Siberia esattamente 182 anni fa e morì in Russia nel 1907 e di sicuro, se chiunque avesse potuto studiare con lui, sarebbe riuscito ad imparare anche soltanto qualche nozione base di chimica! Dopo un passato umile e degli studi impeccabili, ma sempre presso scuole non prestigiose, Mendeleev approda all’Università [...] Continue reading

Centinaia di galassie nascoste dietro la Via Lattea

Illustrazione di come potrebbero apparire le numerose galassie rintracciate per la prima volta nella cosiddetta “zona da evitare” del cielo, basandosi sulle loro posizioni reali relativamente alla nostra galassia. Crediti: ICRARPubblicato il primo elenco completo della popolazione di galassie nascoste nell’ampia zona di cielo mascherata dalla polvere della nostra stessa galassia, una spessa coltre che le onde radio possono però attraversare. I risultati di questo campionamento aiuteranno a svelare il mistero sull'anomalia gravitazionale del Grande Attrattore. Con il commento di Steven Tingay (INAF) Continue reading

Quelle galassie nascoste

Così lontane, così vicine. Sono un gruppo di galassie a “soli” 250 milioni di anni luce da noi – pochissimo, in termini astronomici – che però non erano mai state osservate prima perché nascoste dalla nostra stessa galassia. Fino a oggi.   Un gruppo internazionale di scienziati è stato in grado di osservare per la prima volta una regione inesplorata di Universo, facendosi strada tra stelle e polveri della Via Lattea. E individuando centinaia di galassie nascoste: per l’esattezza 883, un terzo delle quali non era mai stato avvistato prima d’ora.  
Italiano
Continue reading

Ecologisti nello spazio profondo

Il messaggio verrà lanciato via radio in direzione della stella polare. Pur viaggiando a velocità luce impiegherà 434 anni per raggiungere la destinazione finale. Crediti: Paul Quast.Un messaggio di speranza che parla di ambiente e futuro della Terra, lanciato nello spazio interstellare in direzione della stella polare: l’iniziativa dal cuore verde dello UK Astronomical Technology Centre in collaborazione con Università e Royal Observatory Continue reading

Neutrinos on a seesaw

A possible explanation for the lightness of neutrinos could help answer some big questions about the universe.

Mass is a fundamental property of matter, but there’s still a lot about it we don’t understand—especially when it comes to the strangely tiny masses of neutrinos. 

An idea called the seesaw mechanism proposes a way to explain the masses of these curious particles. If shown to be correct, it could help us understand a great deal about the nature of fundamental forces and—maybe—why there’s more matter than antimatter in the universe today.

Wibbly-wobbly massy-wassy stuff

The masses of the smallest bits of matter cover a wide range. Electrons are roughly 1800 times less massive than protons and neutrons, which are one hundred times less massive than the Higgs boson. Other rare beasts like the top quark are heavier still.

Then we have the neutrinos, which don’t fit in at all. 

According to the Standard Model of particles and forces that emerged in the 1970s, neutrinos were massless. Experiments seemed to concur. However, over the next two decades, physicists showed that neutrinos change their flavor, or type.

Neutrinos come in three varieties: electron, muon and tau. Think of them as Neapolitan ice cream: The strawberry is the electron neutrino; the vanilla is the muon neutrino; and the chocolate is the tau neutrino. 

By the late 1980s, physicists were reasonably good at scooping out the strawberry; most experiments were designed to detect electron neutrinos only. But they were seeing far fewer than theory predicted they should. 

By 1998, researchers discovered the missing neutrinos could be explained by oscillation—the particles were changing from one flavor to another. By figuring out how to detect the other flavors, they showed they could account for the remainder of the missing neutrinos. 

This discovery forced them to reconsider the mass of the neutrino, since neutrinos can oscillate only if they have a tiny—but nonzero—mass.

 Today, “just from experimental facts, we know that neutrino masses are way smaller compared to all the other elementary [matter particle] masses,” says Mu-Chun Chen, a theoretical physicist at the University of California, Irvine. 

We don’t yet know exactly how much mass they have, but astronomical observations 1 Looking to the heavens for neutrino masses show they’re likely around a millionth of the mass of an electron—or even less. And this small mass could be a product of the seesaw mechanism. 

Seesaw Mechanism Animation
Artwork by Sandbox Studio, Chicago with Ana Kova

I am not left-handed!

To visualize another important property of neutrinos, make a “thumbs-up” gesture with your left hand. Your fingers will curl the way the neutrino rotates, and your thumb will point in the direction it travels. This combination makes for a “left-handed” particle. Antineutrinos, the antimatter version of neutrinos, are right-handed: Take your right hand and make a thumbs-up to show the relation between their spin and motion.

Some particles such as electrons or quarks don’t spin in any particular direction relative to the way they move; they are neither purely right- nor left-handed. So far, scientists have only ever observed left-handed neutrinos. 

But the seesaw mechanism predicts that there are two kinds of neutrinos: the light, left-handed ones we know and—on the other end of the metaphorical seesaw—heavy, right-handed neutrinos that we’ve never seen. The seesaw itself is a ratio: the higher the mass of the right-handed neutrino, the lower the mass of the left-handed neutrinos. Based on experiments, these right-handed neutrinos would be extraordinarily massive, perhaps 10^15 (one quadrillion) times heavier than a proton.

And there’s more: The seesaw mechanism predicts that if right-handed neutrinos exist, then they would be their own antiparticles. This could give us a clue to how our universe came to be full of matter. 

One idea is that in the first fraction of a second after the big bang, the universe produced just a tiny bit more matter than antimatter. After most particles annihilated with their antimatter counterparts, that imbalance left us with the matter we have today. Most of the laws of physics don’t distinguish between matter and antimatter, so something beyond the Standard Model must explain the asymmetry. 

Particles that are their own antiparticles can produce situations that violate some of the normal rules of physics. If right-handed neutrinos—which are their own antineutrinos—exist, then neutrinos could present the same kind of symmetry violation that might have happened for other types of matter. Exactly how that carries over to matter other than neutrinos, though, is still an area of active research for Chen and other physicists.

Searching for the seesaw

Scientists think they have yet to see these heavy right-handers for two reasons. First, the only force they know to act on neutrinos is the weak force, and the weak force acts only on left-handed particles. Right-handed neutrinos might not interact with any of the known forces.

Second, right-handed neutrinos would be too massive to be stable in our universe, and they would require too much energy to be created in even the most powerful particle accelerator. However, these particles could leave footprints in other experiments.

Today, scientists are studying the light, left-handed neutrinos that we can see to look for signs that could give us a verdict on the seesaw mechanism.

For one, they’re looking to see if neutrinos are their own antiparticles. That wouldn’t necessarily mean that the seesaw mechanism is true, but finding it would be a big point in the seesaw mechanism’s favor.

The seesaw mechanism goes hand-in-hand with grand unified theories—theories that unite the strong, weak and electromagnetic theory into a single force at high energies. If scientists find evidence of the seesaw mechanism, they could learn important things about how the forces are related.

The seesaw mechanism is the most likely way to explain how neutrinos got their mass. However, frustratingly, the nature of the explanation pushes many of its testable consequences out of experimental reach. 

The best hope lies in persistent experimentation, and—as with the discovery of neutrino oscillation in the first place—hunting for anything that doesn’t quite fit expectations.

Continue reading

New E-learning Module: Basics of Radiation and Radiation Emergencies

Did you know that radiation was all around us? Or that lost radioactive sources were among the most common types of radiation emergencies? Get the facts about radiation and radiation emergencies by checking out the IAEA’s new online learning module.

Continue reading

Philae, la ricerca non si ferma

Rosetta si è allontanata dal luogo in cui si presume sia atterrato Philae ma continuerà le operazioni di ricerca. Questo è quanto emerge dalla nota rilasciata dal Tiger Team, un gruppo di esperti voluto dal Lander Steering Committee per fare il quadro dell’attuale situazione del lander.
Italiano
Continue reading