Sharp Way To Get Buy Custom Essay I Was Reading This
3 Ways Determine Each Time A Relationship Is Ancient History
Opal is essentially the most colorful of all gems. It is normally referred to as the “Queen of Gems”. More than any other gem, each gem is distinctly persons. It is incredibly rare gemstone and for this reason is precious. Precious opal, in comparison with to common opal, offers the rainbow iridescence that already been so highly prized since Roman time.
- Affordable Essay
- Pay For Paper
- Buy Essays Papers
- Online Paper Mill
- Pay For Paper Writing
- Free Essay Papers
- Purchase Essay Online
From Ancient History and art to natural beauty, Cycling Holidays In Spain cover the sum of the gamut. Spain is probably beautiful the european union and a pure visual delight. Nature lovers will feel truly at home in this exotic place where saving money and mountains combine to form a divine terrain. Spain’s natural beauty tends to be prevented in light of city life and beaches. Completely person sees it, he’ll have a great shock. Basic scenic locations abound, a cycling trip will encompass many an amazing sight.
When you are considering math, if you have a child who is utterly bored in the concept then let them… Continue reading
Great Way For You To Best Software To Root Android
Samsung Galaxy S3 Android Phone – Amazing Mainly Deals With T-Mobile
If a person the proud owner a good Android, Pretty much every you have wanted to add games on the device but to purchase them can have expensive. If you would like to have some great games without paying of the price, below you will find the five top games for your Android. Motivating all depending on the Talk Android online business.
Yesterday, android central reported how the Epic 4G would get an official scoop on December 26th, a nice belated Christmas gift, industry by storm . Phone Arena has confirmed this by using a screenshot of internal Sprint memo that confirms the date.
The test messaging services are well clean. After typing a message, many choose which Sim card to use to send your test. Another good involving this phone is that importing contacts from elsewhere is quite easy, seeing that the Android address book about the tabular design which is what makes the job of looking for and accessing contact details effortless. Step how to root my android how to root an andriod http://root-androidonline.com/ click on the contact, use displays all the means of contacting human being… Continue reading
Five New Charmed Baryons Discovered By LHCb!
GGG, il Giovane Gigante Gioviano

Titano con tutte quelle bollicine

Q&A: Dark matter next door?
Astrophysicists Eric Charles and Mattia Di Mauro discuss the surprising glow of our neighbor galaxy.

Astronomers recently discovered a stronger-than-expected glow of gamma rays at the center of the Andromeda galaxy, the nearest major galaxy to the Milky Way. The signal has fueled hopes that scientists are zeroing in on a sign of dark matter, which is five times more prevalent than normal matter but has never been detected directly.
Researchers believe that gamma rays—a very energetic form of light—could be produced when hypothetical dark matter particles decay or collide and destroy each other. However, dark matter isn’t the only possible source of the gamma rays. A number of other cosmic processes are known to produce them.
So what do Andromeda’s gamma rays really tell us about dark matter? To find out, Symmetry’s Manuel Gnida talked with Eric Charles and Mattia Di Mauro, two members of the Fermi-LAT collaboration—an international team of researchers that found the Andromeda gamma-ray signal using the Large Area Telescope, a sensitive “eye” for dark matter on NASA’s Fermi Gamma-ray Space Telescope.
Both researchers are based at the Kavli Institute for Particle Astrophysics and Cosmology, a joint institute of Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory. The LAT was conceived of and assembled at SLAC, which also hosts its operations center.
Have you discovered dark matter?
No, we haven’t. In the study, the LAT team looked at the gamma-ray emissions of the Andromeda galaxy and found something unexpected, something we don’t fully understand yet. But there are other potential astrophysical explanations than dark matter.
It’s also not the first time that the LAT collaboration has studied Andromeda with Fermi, but in the old data the galaxy only looked like a big blob. With more data and improved data processing, we have now obtained a much clearer picture of the galaxy’s gamma-ray glow and how it’s distributed.
What’s so unusual about the results?
As a spiral galaxy, Andromeda is similar to the Milky Way. Therefore, we expected the emissions of both galaxies to look similar. What we discovered is that they are, in fact, quite different.
In our galaxy, gamma rays come from all kinds of locations—from the center and the spiral arms in the outer regions. For Andromeda, on the other hand, the signal is concentrated at the center.
Why do galaxies glow in gamma rays?
The answer depends on the type of galaxy. There are active galaxies called blazars. They emit gamma rays when matter in close orbit around supermassive black holes generates jets of plasma. And then there are “normal” galaxies like Andromeda and the Milky Way that produce gamma rays in other ways.
When we look at the emissions of the Milky Way, the galaxy appears like a bright disk, with the somewhat brighter galactic center at the center of the disk. Most of this glow is diffuse and comes from the gas between the stars that lights up when it’s hit by cosmic rays—energetic particles spit out by star explosions or supernovae.
Other gamma-ray sources are the remnants of such supernovae and pulsars—extremely dense, magnetized, rapidly rotating neutron stars. These sources show up as bright dots in the gamma-ray map of the Milky Way, except at the center where the density of gamma-ray sources is high and the diffuse glow of the Milky Way is brightest, which prevents the LAT from detecting individual sources.
Andromeda is too far away to see individual gamma-ray sources, so it only has a diffuse glow in our images. But we expected to see most of the emissions to come from the disk as well. Its absence suggests that there is less interaction between gas and cosmic rays in our neighbor galaxy. Since this interaction is tied to the formation of stars, this also suggests that Andromeda had a different history of star formation than the Milky Way.
What does all this have to do with dark matter?
When we carefully analyze the gamma-ray emissions of the Milky Way and model all the gas and point-like sources to the best of our knowledge, then we’re left with an excess of gamma rays at the galactic center. Some people have argued this excess could be a telltale sign of dark matter particles.
We know that the concentration of dark matter is largest at the galactic center, so if there were a dark matter signal, we would expect it to come from there. The localization of gamma-ray emissions at Andromeda’s center seems to have renewed the interest in the dark matter interpretation in the media.
Is dark matter the most likely interpretation?
No, there are other explanations. There are so many gamma-ray sources at the galactic center that we can’t really see them individually. This means that their light merges into an extended, diffuse glow.
In fact, two recent studies from the US and the Netherlands have suggested that this glow in the Milky Way could be due to unresolved point sources such as pulsars. The same interpretation could also be true for Andromeda’s signal.
What would it take to know for certain?
To identify a dark matter signal, we would need to exclude all other possibilities. This is very difficult for a complex region like the galactic center, for which we don’t even know all the astrophysical processes. Of course, this also means that, for the same reason, we can’t completely rule out the dark matter interpretation.
But what’s really important is that we would want to see the same signal in a few different places. However, we haven’t detected any gamma-ray excesses in other galaxies that are consistent with the ones in the Milky Way and Andromeda.
This is particularly striking for dwarf galaxies, small companion galaxies of the Milky Way that only have few stars. These objects are only held together because they are dominated by dark matter. If the gamma-ray excess at the galactic center were due to dark matter, then we should have already seen similar signatures in the dwarf galaxies. But we don’t.