Comunicati Stampa

IN ORBITA DAMPE, A CACCIA DI MATERIA OSCURA NEI RAGGI COSMICI


dampe lancioCOMUNICATO STAMPA Una nuova missione ha appena lasciato la Terra, alla ricerca dell'inafferrabile materia oscura. Si tratta di DAMPE (DArk Matter Particle Explorer), partito dalla base di lancio cinese Jiuquan Satellite Launch Center nel deserto di Gobi, alle 8:12 del mattino ora locale, quando in Italia era ancora l'1:12 della notte. Spedito in orbita dall’agenzia spaziale cinese a bordo del vettore Long March 2D, il satellite è frutto di un accordo di collaborazione internazionale tra l’Istituto Nazionale di Fisica Nucleare (INFN) - con le sezioni di Perugia, Bari e Lecce -, la Chinese Academy of Sciences (CAS), le Università di Perugia, Bari e del Salento, e l’Università di Ginevra. DAMPE può essere considerato il figlio della linea di ricerca e tecnologia sviluppate congiuntamente da ASI ed INFN che ha dato luogo a PAMELA, AMS (01 e 02), e FERMI. Il satellite estenderà le misure già effettuate nello spazio da PAMELA, Fermi-LAT (Large Area Telescope) e AMS-02 (Alpha Magnetic Spectrometer), ancorata alla Stazione Spaziale Internazionale (ISS) dal 2011. Orbiterà a una quota di circa 500 km, dalla quale cercherà la sfuggente materia oscura nel flusso di raggi cosmici che piovono incessantemente sul nostro Pianeta.

"L’esperimento DAMPE è una missione per lo studio delle astroparticelle di alte energie, disegnata per rivelare elettroni e fotoni con una precisione e in un intervallo di energia maggiori di quanto possibile con gli strumenti attuali. Lo scopo - afferma Giovanni Ambrosi, della sezione INFN di Perugia, coordinatore nazionale dell’esperimento - è identificare possibili segnali della presenza di materia oscura studiando le caratteristiche delle particelle ordinarie misurate dal rivelatore. Le tecnologie utilizzate sono quelle più avanzate disponibili per la rivelazione di particelle elementari, spinte - sottolinea Ambrosi - a un livello di qualità e affidabilità estremo, per poter garantire una missione di lunga durata, almeno tre anni, nello spazio".

"Con il lancio di DAMPE, l’INFN vede riconosciuta internazionalmente la propria capacità di costruire rivelatori spaziali di altissima qualità - sottolinea Marco Pallavicini, presidente della commissione nazionale INFN per la fisica delle astroparticelle -. DAMPE sonderà il mistero della materia oscura, cercando particelle più pesanti di quelle osservabili con gli strumenti oggi in quota, e seguendo una via complementare alle ricerche dirette realizzate ai Laboratori Nazionali del Gran Sasso", aggiunge Pallavicini.

L'esperimento

Il satellite DAMPE è uno dei cinque progetti di missione spaziale del programma Strategic Pioneer Program on Space Science della CAS. Ha un peso complessivo di circa 1900 kg, di cui 1400 kg rappresentati dai quattro esperimenti scientifici. Una componente chiave del satellite è il tracciatore al silicio, interamente realizzato da ricercatori italiani con il coordinamento dell'INFN di Perugia. Per garantire l’affidabilità delle scelte costruttive e le prestazioni del rivelatore con i raggi cosmici, un modello di qualifica - del tutto analogo a quello impiegato in volo - è stato sottoposto prima del lancio a verifiche presso il CERN di Ginevra, nell’ambito di una campagna di test con fasci di elettroni, protoni e ioni, che si sono conclusi lo scorso giugno. Il rivelatore è stato poi completato ed è arrivato a Pechino, dove è stato assemblato con il resto dell’apparato, in vista del lancio di oggi.

“L’esperienza maturata in seno all’INFN nello sviluppo di rivelatori a microstrisce di silicio, in ambito spaziale, per il tracciamento di precisione delle particelle incidenti in DAMPE è stata determinante per vincere questa sfida - spiega Giovanni Ambrosi -. Una sfida che ha visto, in meno di due anni, la progettazione, costruzione, qualifica spaziale, e verifica con fasci di particelle, di un tracciatore composto da 12 piani di rivelatori di silicio”.

DAMPE permetterà di misurare con grande accuratezza la direzione di arrivo dei fotoni cosmici e, allo stesso tempo, di differenziare le specie nucleari che compongono i raggi cosmici e la loro traiettoria. In particolare, misurerà elettroni e fotoni nell’intervallo di energie tra i 5 GeV (5 miliardi di elettronvolt) e i 10 TeV (diecimila miliardi di elettronvolt). Sarà anche in grado di misurare il flusso di nuclei con range tra 100 GeV e 100 TeV, fornendo quindi nuovi dati e indicazioni per capire l'origine e la propagazione dei raggi cosmici di alta energia.

“Grazie alle peculiari caratteristiche dei rivelatori a bordo di DAMPE, sarà possibile dare un contributo fondametale alla comprensione dei meccanismi di produzione e accelerazione della radiazione cosmica di origine galattica” sottolinea Ivan De Mitri, dell’Universita’ del Salento, e della sezione INFN di Lecce.

“Per la prima volta – aggiunge Mario Nicola Mazziotta, della sezione INFN di Bari - viene messo in orbita uno strumento che migliorerà le potenzialità nella ricerca dei raggi gamma prodotti dall’annichilazione di particelle di materia oscura”.

“DAMPE continuerà la tradizione degli osservatori di raggi gamma e X nello spazio - afferma Fabio Gargano, della sezione INFN di Bari -. I dati raccolti permetteranno agli scienziati di tutto il mondo di studiare i fenomeni di quello che è noto come Universo violento, e che hanno origine sia nella nostra galassia che al di fuori di essa”.

"Con la sua eccellente capacità di rivelare i fotoni, la missione DAMPE ha buone chance di effettuare nuove scoperte nel campo dei raggi gamma di alta energia. Dopo la messa in orbita - spiega Ambrosi - è di primaria importanza essere pronti a verificare il comportamento dello strumento appena arriveranno a terra i primi dati. Trascorse alcune settimane di verifica, il rivelatore dovrà, infatti, funzionare al massimo delle sue prestazioni per poter permettere al team di scienziati lo studio dei fotoni e delle particelle di origine cosmica", conclude Ambrosi.

La materia oscura

Siamo immersi in una materia che non conosciamo. Le osservazioni dell’universo suggeriscono che, oltre a quella ordinaria, ci sia nel cosmo un altro tipo di materia che ancora ci sfugge: la materia oscura. La sua massa piega le traiettorie della luce, come insegna la Relatività Generale di Einstein, mutando ai nostri occhi la posizione delle stelle, e rivelandoci indirettamente la sua presenza. Questa elusiva materia è, infatti, uno degli ingredienti base dell'universo: una sorta di ragnatela cosmica che tiene assieme le galassie. La stessa Via Lattea, ad esempio, secondo i modelli teorici più accreditati, sarebbe avvolta da un alone di materia oscura simile a una fitta nebbia. I fisici sanno che la materia oscura esiste, che non assorbe, né emette luce e che, finora, sembra non interagire con il nostro mondo, pur essendo cinque volte più abbondante della materia ordinaria che compone tutto ciò che conosciamo. Ma non sanno ancora quale sia la sua natura. Per questo, tentano da anni di scovarne le tracce, ad esempio in laboratori sotterranei ospitati nelle viscere di una montagna, come i Laboratori Nazionali del Gran Sasso dell'INFN, o nel superacceleratore Large Hadron Collider (LHC) del CERN di Ginevra, o ancora nello spazio, proprio come farà DAMPE. Tra i possibili candidati come costituenti della materia oscura ci sono le cosiddette particelle WIMP (Weakly Interacting Massive Particle).

Il ruolo dell’Italia

Il gruppo di scienziati italiani di DAMPE, con il coordinamento dell’INFN di Perugia, comprende ricercatori dell’INFN e delle Università di Perugia, Bari e del Salento, a Lecce. Il loro sforzo principale in questi ultimi due anni è stato il disegno, la realizzazione e la verifica del rivelatore di tracce al silicio. La tecnologia di questo tipo di rivelatore - sviluppata originariamente negli anni ‘80 per gli esperimenti di fisica delle particelle elementari negli acceleratori - è stata utilizzata per la prima volta nello spazio proprio dai fisici italiani con l’esperimento AMS-01, che ha volato per dieci giorni sullo Space Shuttle Discovery nel 1998. Sono poi seguiti altri esperimenti - come Pamela e FERMI su satelliti, e AMS-02 sulla ISS - tutti operanti da anni in orbita attorno alla Terra. Il gruppo italiano ha, inoltre, fornito l’esperienza e le attrezzature necessarie per effettuare verifiche di funzionamento dell’intero apparato di DAMPE con fasci di particelle, presso il CERN di Ginevra. Completato lo sforzo per la costruzione dell’apparato sperimentale, i ricercatori italiani saranno nei prossimi mesi in prima linea nelle attività di studio delle prestazioni del rivelatore, e nella preparazione degli strumenti di analisi dati per lo studio dei flussi dei raggi cosmici, sia per gli elettroni che per gli ioni.

Video lancio DAMPE

http://video.weibo.com/show?fid=1034:939948d3bd79e3f7543ee42fff59dd95

Un video su DAMPE della Chinese Academy of Sciences

http://dpnc.unige.ch/dampe/video/dampe_chinese_video.mp4 

Continue reading

IL PUZZLE COSMICO DELL’ORIGINE DEGLI ELEMENTI

Comunicato stampa: L’esperimento LUNA che si trova ai Laboratori Nazionali del Gran Sasso dell’Istituto Nazionale di Fisica Nucleare ha osservato una rara reazione nucleare che avviene nelle stelle giganti rosse, un tipo di stelle in cui evolverà anche il nostro Sole. Si tratta della prima osservazione diretta del processo di produzione del sodio all’interno di queste stelle, una delle reazioni nucleari fondamentali per la costruzione degli elementi che costituiscono l’universo. Lo studio è pubblicato su Physical Review Letters.( http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.252501) LUNA (Laboratory for Underground Nuclear Astrophysics) è un acceleratore lineare di piccole dimensioni, l’unico al mondo installato in un laboratorio sotterraneo, al riparo dai raggi cosmici. Il suo obiettivo è studiare le reazioni nucleari che avvengono nel cuore delle stelle dove, come in un’affascinante ed esplosiva cucina cosmica, vengono prodotti gli elementi che compongono la materia per poi disperdersi in polveri cosmiche in seguito a gigantesche esplosioni. In questo esperimento sono state osservate per la prima volta tre “risonanze” in una reazione del ciclo neon-sodio tramite cui viene prodotto il sodio nelle giganti rosse e si libera energia. Una “risonanza”, analogamente a quanto avviene in acustica, è una particolare condizione che rende estremamente probabile la reazione all’interno della stella. (ndr la reazione è 22Ne(p,gamma)23Na) LUNA ricrea le energie delle reazioni nucleari, riportando, con il suo acceleratore, l’orologio indietro nel tempo fino a cento milioni di anni dopo il big bang, quando si formavano le prime stelle e si innescavano quei processi che hanno dato origine a misteri che non abbiamo ancora completamente compreso come ad esempio l’enorme variabilità nella quantità degli elementi presenti nell’universo “Questo risultato è un’importante tessera del puzzle cosmico sull’origine degli elementi che l’esperimento studia da 25 anni. – commenta Paolo Prati spokesperson dell’esperimento LUNA – Le stelle producono energia e nel contempo assemblano gli atomi tramite una complessa rete di reazioni nucleari. Pochissime tra queste reazioni sono state studiate nelle condizioni in cui avvengono all'interno delle stelle, e tra questi pochi risultati molti sono quelli ottenuti con questo acceleratore” Luna impiega un acceleratore lineare di piccole dimensioni in cui fasci di idrogeno o elio sono accelerati e fatti scontrare contro un bersaglio (costituito, in questo caso, da un isotopo del neon), producendo altre particelle. Speciali rivelatori fotografano i prodotti delle collisioni e identificano la reazione che si vuole studiare.Trattandosi di processi estremamente rari è essenziale che l’apparato sia collocato nel silenzio cosmico dei Laboratori Nazionali del Gran Sasso dove la pioggia di particelle proveniente dal cosmo, i raggi cosmici, viene schermata dall’ammasso roccioso proteggendo le misure dell’esperimento. LUNA è una collaborazione internazionale di circa 50 ricercatori italiani, tedeschi, scozzesi ed ungheresi a cui partecipano l’istituto Nazionale di Fisica Nucleare per l’Italia, l’Helmholtz-Zentrum Dresden-Rossendorf per la Germania, il MTA-ATOMKI per l’Ungheria, la School of Physics and Astronomy, dell’Università di Edimburgo per il Regno Unito. In Italia collaborano all’esperimento: i Laboratori Nazionali del Gran Sasso dell’INFN, le sezioni INFN e le università di Bari, Genova, Milano, Napoli, Padova, Roma La Sapienza, Torino e l’Osservatorio INAF di Teramo

Continue reading

Censimento cosmico in formato XXL

figures-pr-2015-5E' il più grande programma osservativo di ammassi di galassie mai realizzato dal telescopio dell’Agenzia Spaziale Europea. Un ambizioso progetto che ha coinvolto circa cento scienziati da tutto il mondo, tra cui numerosi dell’INAF e che ora inizia a dare i primi risultati scientifici Continue reading

IL TELESCOPIO PER NEUTRINI KM3NET IN ASCOLTO DELLE VOCI DEI CAPODOGLI NEL MAR IONIO

mother and_baby_sperm_whaleNasce per osservare i neutrini ad alta energia provenienti dal Cosmo, ma è anche un sensibile orecchio per intercettare alcuni suoni del Pianeta, in particolare la voce dei grandi cetacei nel Mediterraneo. Nel corso di una fase preliminare del progetto KM3NeT-Italia, la stazione di ascolto sperimentale OnDE, posizionata a 25 km dalle coste di Catania, a una profondità di 2100 metri, ha monitorato, grazie a particolari sensori acustici messi a punto dai fisici dei Laboratori Nazionali del Sud (LNS) dell'INFN, il transito dei capodogli nel Mar Ionio. I dati sono appena stati pubblicati su PLOS ONE.

"I risultati mostrano che nell'area del Golfo di Catania - in precedenza poco studiata - la popolazione di capodogli ha una dimensione compresa tra i 7,5 e i 14 metri, ed è rappresentata soprattutto da femmine adulte o giovani maschi”, afferma Francesco Caruso, biologo dell'Università di Messina, tra gli autori della ricerca. L'analisi dimostra, inoltre, che la distribuzione della taglia degli esemplari, ricavata dallo studio di circa 200 identificazioni, varia anche in funzione dei diversi periodi dell'anno.

“Abbiamo utilizzato una nuova e promettente tecnologia definita monitoraggio acustico passivo, perché basata solo sull’ascolto continuo e ad alta risoluzione dell'ambiente marino profondo - afferma Giorgio Riccobene dei LNS, responsabile del progetto SMO (Submarine Multidisciplinary Observatory) -. Un ascolto che consente anche di misurare i livelli di inquinamento acustico del mare, e potrebbe essere presto utilizzata per proteggere i capodogli, e altri grandi cetacei come le balene, dall'attività marittina dell'uomo, segnalandone la presenza alle navi che potrebbero incrociarne la rotta”, conclude Riccobene. I capodogli del Mediterraneo, specie preziosa per l'equilibrio ecologico dei nostri mari, sono infatti ad alto rischio estinzione, classificati come endangered nella cosiddetta Lista Rossa dell'Unione Mondiale per la Conservazione della Natura (www.iucn.org).

I sensori acustici hanno intercettato i suoni usati dai capodogli per la ricognizione ambientale, la caccia e per le comunicazioni con gli altri esemplari della stessa specie. Le voci di questi cetacei, che i biologi marini chiamano "click", sono impulsi multipli della durata di poche decine di millisecondi, emessi dalla parte frontale del capo. Dall'analisi di questi click, grazie a un nuovo algoritmo realizzato in sinergia da fisici e biologi della collaborazione SMO, i ricercatori sono riusciti a ricostruire le dimensioni dei capodogli. Le registrazioni acustiche sono state, infine, condivise e correlate con i dati ambientali registati nel database di EMSO (European Multidisciplinary Seafloor Observatory), un'infrastruttura europea di ricerca, coordinata dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), per il monitoraggio geofisico, ambientale e acustico dell'habitat marino profondo in diversi siti europei.

Lo studio sui cetacei è stato realizzato nell'ambito del progetto MIUR-Futuro in ricerca SMO (Submarine Multidisciplinary Observatory), ed ha coinvolto l'INFN - in particolare i LNS e la sezione di Roma, presso Sapienza Università di Roma - il Dipartimento di Scienze Biologiche e Ambientali dell'Università di Messina, il Centro Interdisciplinare di Bioacustica e Ricerche Ambientali (CIBRA) dell'Università di Pavia, il Dipartimento di Fisica e Astronomia dell'Università di Catania e l’Istituto per l’Ambiente Marino e Costiero (IAMC) del Consiglio Nazionale delle Ricerche (CNR) di Capo Granitola, a Trapani.

Il telescopio per neutrini KM3NeT è un progetto realizzato in partnership da Italia, Cipro, Francia, Germania, Grecia, Irlanda, Olanda, Regno Unito, Romania e Spagna.

Continue reading

LE FOTOGRAFIE DI FISICA PIU’ ORIGINALI: ECCO I VINCITORI DEL GLOBAL PHYSICS PHOTOWALK

COMUNICATO STAMPA: C’è anche una foto scattata ai Laboratori Nazionali di Frascati dell’INFN, tra quelle vincitrici dell’edizione 2015 del Global Physics Photowalk, il concorso fotografico per cui alcuni tra i più importanti laboratori di fisica del mondo hanno ospitato centinaia di fotografi dilettanti e professionisti. Il secondo posto della votazione online è andato infatti allo scatto di Pietromassimo Pasqui, che ritrae una camera del vuoto e uno specchio che trasporta il fascio laser dell’acceleratore SPARC. “E’ con piacere che apprendiamo che nell'edizione 2015 di Photowalk, una foto dedicata ai Laboratori INFN di Frascati si sia collocata al secondo posto nel voto popolare – ha dichiarato Pierluigi Campana, direttore dei Laboratori - Siamo impressionati da quanto fotografi professionisti e non, possano in maniera così bella fissare alcuni momenti e luoghi del nostro fare ricerca. Arte, fotografica in questo caso, e scienza, camminano l'una accanto all'altro.” Sono stati 200 i fotografi che hanno preso parte all’edizione 2015 del Photowalk di fisica in otto laboratori: oltre ai Laboratori INFN di Frascati, il CERN di Ginevra, SLAC in California, FERMILAB a Chicago, KEK in Giappone, COEPP in Australia, TRIUMPH in Canada. Tra le migliaia di foto pervenute, I laboratori hanno selezionato le migliori, che hanno poi potuto partecipare alla competizione globale. Una commissione internazionale di giudici composta da artisti, fotografi e scienziati ha esaminato le foto per incoronare i vincitori del premio della critica. Una votazione online ha contemporaneamente determinato i preferiti del pubblico. La fotografia di Katy Mackenzie della Sala di Controllo Principale di TRIUMF si è aggiudicata il primo posto nel voto della giuria di esperti. Per la broker di Vancouver con l’hobby della fotografia, la foto rappresenta un collegamento con le meraviglie dell’infanzia ed è associata al ricordo delle visite fatte al padre sul posto di lavoro, essendo egli andato in pensione dalla sua posizione di ricercatore senior più di 30 anni fa. “Questa fotografia evoca l’esperienza umana e la qualità quotidiana di lavoro, scienza e tecnologia,” ha osservato il giudice Robert Bean, artista, scrittore e professore della Nova Scotia University of Art and Design University in Canada. “Il mix di analogico e digitale,” ha detto, “indica come la conoscenza scientifica emerga da un complesso di cose. Alexander Graham Bell approverebbe.” Per la prima volta il SUPL (Stawell Underground Physics Laboratory) di Victoria, in Australia, si guadagna il secondo posto con lo scatto di Mark Killmer del laboratorio temporaneo presso la Stawell Gold Mine. Il terzo posto è stato conferito allo scatto del CERN di Robert Hradil, The Incredibles. La foto, scattata presso il ristorante del CERN, cattura in modo spontaneo il trasferimento di conoscenze tra passato, presente e futuro. In parallelo alla giuria di esperti la votazione online, a cui hanno partecipato oltre 3,800 utenti, ha selezionato tre differenti scatti. In questo caso Il primo posto è stato conquistato dalla fotografia di Molly Patton presso SUPL di una trivella elettrica. Patton si è lasciata ispirare dal laboratorio sotterraneo in quanto “esso fa strada per la possibilità dell’osservazione della materia oscura e il futuro della fisica delle particelle.” Il secondo posto, come detto, va allo scatto di Pietromassimo Pasqui presso i Laboratori Nazionali di Frascati dell’INFN, in Italia, che ritrae una camera del vuoto e uno specchio che trasporta il fascio laser dell’acceleratore SPARC. Rosemary Wilson conquista il terzo posto con la foto di DESY, presso Amburgo, in Germania, in cui compare la camera del rivelatore che ha registrato i dati del collisore HERA dal 1992 al 2007. Le foto vincitrici, e altre informazioni sui giudici e le votazioni, sono disponibili su http://www.interactions.org/cms/?pid=1035363. Le foto saranno pubblicate su symmetry magazine, il CERN Courier e in Italia dalla rivista dell’INFN Asimmetrie e da Le Scienze. Inoltre le foto vincitrici prenderanno parte ad un’ esposizione itinerante attraverso I laboratori di Australia, Asia, Nord America e Europa, che farà una tappa anche in Italia. Contatti per la stampa: Ufficio Comunicazione INFN vincenzo.napolano@presid.infn.it, tel. 066868162, 3472994985 Ufficio Comunicazione e Educazione Scientifica INFN-LNF Rossana Centioni comedu@lnf.infn.it TEL: +39069403 2423/2868/2871 http://edu.lnf.infn.it/


GIURIA ESPERTI INTERNAZIONALI

 3p 3p   3p

GIURIA POPOLARE

 3p 3p  3p

Continue reading

AL VIA EXANEST, PROGETTO EUROPEO DI SUPERCALCOLO

exanest kickoffmtgParte in questi primi giorni di dicembre 2015 ExaNeSt, European Exascale System Interconnect and Storage, uno dei 21 progetti europei Future Emerging Technologies (FET) High Performance Computing (HPC) per lo sviluppo di sistemi di calcolo ad alte prestazioni, selezionati nell'ambito del programma di ricerca Horizon 2020 in seguito alla call for proposals Towards exascale high performance computing.
I partner del progetto, tra cui l’INFN che vi partecipa con la sezione di Roma presso Sapienza Università di Roma e il CNAF - il centro nazionale dell’INFN per la ricerca e lo sviluppo nelle tecnologie informatiche e telematiche -, si sono dati appuntamento in questi giorni a Heraklion, nell'isola greca di Creta, in occasione del kick-off meeting organizzato dalla Foundation for Research & Technology-Hellas (FORTH), coordinatrice del progetto, per discutere e programmare le attività future. ExaNeSt, cui per l'Italia partecipano anche l'Istituto Nazionale di Astrofisica (INAF) e le società eXact LAB e il ramo italiano di ENGINSOFT, ha una durata di tre anni, già interamente finanziati con circa 8,5 milioni di euro. "Alla fine dei tre anni - spiega Piero Vicini, coordinatore INFN di ExaNeSt - avremo un prototipo, da utilizzare per testare programmi per calcoli di fisica teorica computazionale o simulazioni di sistemi complessi, tra i quali un modello ridotto e semplificato del funzionamento del cervello umano". Settori in cui l'INFN ha una tradizione consolidata, come dimostra il recente ingresso del consorzio WAVESCALES, a guida INFN, nello Human Brain Project (HBP), progetto europeo per lo studio del cervello.
Lo studio delle reti è uno dei settori di punta in cui l'Unione Europea ha deciso d'investire maggiormente nei prossimi anni. Basti pensare che, secondo le previsioni di Google Emea (Europa, Medio Oriente e Africa), entro il 2020 le persone connesse alla Rete sono destinate quasi a raddoppiare, passando dagli attuali 2,8 miliardi, ciascuna con due o tre dispositivi, a cinque miliardi nei prossimi cinque anni, con l'impiego di cinque o sei dispositivi pro capite. Un balzo che richiederà anche lo sviluppo di supercomputer, formati cioè da centinaia di migliaia di microprocessori capaci di operare in parallelo.
"Uno degli obiettivi di ExaNeSt - sottolinea Piero Vicini - è far sì che questi processori, tra centomila e un milione, siano in grado, da un lato di archiviare e accedere ai dati del calcolo nel minor tempo possibile e, dall'altro, di parlare tra loro in modo efficiente, e con il minimo dispendio energetico. La sfida - conclude Vicini - è ambiziosa: raggiungere in un singolo sistema una potenza di calcolo di un miliardo di miliardi di operazioni al secondo, una cifra a 18 zeri".

Continue reading

KM3NET: DOPO LA FASE PREPARATORIA, PARTE ORA LA COSTRUZIONE DEL RIVELATORE PER NEUTRINI DA UN CHILOMETRO CUBO

KM3NeT2Si sono da poco concluse le operazioni della posa in mare e del collegamento a terra della prima stringa nella sua configurazione definitiva del telescopio per neutrini KM3NeT. Questo risultato segna l'inizio della costruzione dell'esperimento internazionale, cui partecipa l'Istituto Nazionale di Fisica Nucleare (INFN), che verrà a costituire il più grande rivelatore di neutrini astrofisici dell'emisfero nord della Terra. Collocato nelle profondità del Mar Mediterraneo, KM3NeT studierà le proprietà fondamentali dei neutrini e mapperà i neutrini cosmici di alta energia prodotti nei processi astrofisici più violenti ed esplosivi che avvengono nel nostro universo.


A bordo della nave Ambrosius Tide, la prima stringa, avvolta come un gomitolo di lana, è stata trasportata fino al sito KM3NeT-Italia, a un centinaio di chilometri al largo delle coste meridionali della Sicilia. È stata quindi calata in acqua, ancorata al fondo marino a una profondità di 3500 metri ed è stata collegata, utilizzando un sommergibile filoguidato dalla nave, alla cosiddetta junction box, già presente sul fondo del mare, che attraverso un cavo lungo 100 km è in connessione con la stazione di terra dell'esperimento, situata a Portopalo di Capo Passero. Infine il “gomitolo” è stato srotolato e la struttura ha assunto la sua configurazione finale "a stringa", tenuta in tensione in posizione verticale da una boa di profondità.
Le operazioni di posa della stringa si sono concluse con un pieno successo: non appena attivato il collegamento, gli strumenti della base di terra hanno iniziato subito a ricevere i dati della rivelazione dei primi muoni.


"Il telescopio è stato progettato per operare a grande profondità nell'acqua del mare perché quest'ultima scherma l'apparato dalle particelle dei raggi cosmici dell'atmosfera", spiega Marco Circella, coordinatore tecnico di KM3NeT. "Costruire una grande infrastruttura del genere a queste profondità – prosegue Circella – rappresenta una sfida tecnologica enorme: l'intero progetto deve essere dimensionato per resistere a condizioni ambientali estreme e con minime possibilità di manutenzione". La riuscita acquisizione dei dati rappresenta quindi un passo fondamentale per il progetto, il culmine di oltre dieci anni di ricerca e sviluppo da parte degli Istituti di ricerca, impresa nella quale l'INFN ha dato un contributo fondamentale.


I neutrini sono le più sfuggenti particelle elementari e la loro individuazione richiede strumentazione dai volumi enormi. KM3NeT occuperà più di un chilometro cubo di acqua di mare grazie a una rete costituita da diverse centinaia di stringhe di rilevamento verticali ancorate al fondo marino, alte 700 m. Ogni stringa ospita 558 fotomoltiplicatori, cioè fotosensori per la rivelazione della luce, distribuiti in 18 moduli ottici spaziati da 40 m. Nel buio degli abissi, i sensori registrano i deboli lampi di luce Cherenkov che segnalano l'interazione dei neutrini con l'acqua di mare che circonda il telescopio. Quando un neutrino interagisce con un atomo dell'acqua marina, infatti, produce un muone che, viaggiando nell'acqua a una velocità maggiore di quella dei fotoni nello stesso mezzo, emette un debole lampo bluastro che viene raccolto dai fotomoltiplicatori. Grazie all'analisi di questi segnali luminosi i ricercatori sono in grado di risalire alle caratteristiche e alla direzione del neutrino primario.


KM3NeT è tra i progetti in esame per entrare nella roadmap ESFRI (European Strategy Forum on Research Infrastructures). Alla collaborazione internazionale partecipano, oltre all'Italia, Cipro, Francia, Germania, Grecia, Irlanda, Olanda, Regno Unito, Romania, Spagna. La collaborazione italiana, finanziata e guidata dall'INFN e da numerose Università (Bari, Bologna, Catania, Genova, Napoli, Roma Sapienza), ha condotto la fase preparatoria del progetto europeo KM3NeT. Inoltre, sotto la sigla INFN "Nemo" (Neutrino Mediterranean Observatory) la collaborazione conduce dal 1998 un'intensa attività di ricerca per lo studio del sito abissale di Capo Passero e lo sviluppo delle tecnologie sottomarine per la costruzione del rivelatore.

Il contributo italiano
La componente italiana è tra le più numerose e le più attive nella Collaborazione internazionale. Ad essa competono il coordinamento tecnico generale, l'allestimento e la gestione dell'infrastruttura a terra e sottomarina, e l'organizzazione di interi sottoprogetti cruciali per la buona riuscita dell'esperimento, che comprendono il sistema di alimentazione, la calibrazione dell'apparato e il sistema di acquisizione dati. Le responsabilità italiane nella costruzione dell'apparato includono inoltre il database centrale di esperimento, l'elettronica di acquisizione dei dati dei fotomoltiplicatori, la preparazione dei fotomoltiplicatori, l'integrazione dei moduli ottici, dei moduli di base e delle stringhe, nonché lo sviluppo degli strumenti di test per tutte queste fasi di costruzione. L'Itlia e l'INFN, inoltre, hanno dato il maggior contributo finanziario alla realizzazione del progetto e questo è stato possibile grazie al forte appoggio della Regione Sicilia attraverso i fondi strutturali.

Continue reading

MAORY: una commessa da 18.5 milioni di euro

ar-metis-maory-micado-ccLa realizzazione di MAORY, un modulo cruciale del telescopio europeo da 39 metri ELT, è stata affidata oggi a un consorzio internazionale guidato dall’Istituto Nazionale di Astrofisica. Nicolò D’Amico (Presidente INAF): «Il fatto che l'Italia sia in prima linea nell’ottica adattiva è motivo di orgoglio» Continue reading