CERN ramps up neutrino program
The research center aims to test two large prototype detectors for the DUNE experiment.

In the midst of the verdant French countryside is a workshop the size of an aircraft hangar bustling with activity. In a well lit new extension, technicians cut through thick slices of steel with electric saws and blast metal joints with welding torches.
Inside this building sits its newest occupant: a two-story-tall cube with thick steel walls that resemble castle turrets. This cube will eventually hold a prototype detector for the Deep Underground Neutrino Experiment, or DUNE, the flagship research program hosted at the Department of Energy’s Fermi National Accelerator Laboratory to better understand the weird properties of neutrinos.
Neutrinos are the second-most abundant fundamental particle in the visible universe, but because they rarely interact with atoms, little is known about them. The little that is known presents a daunting challenge for physicists since neutrinos are exceptionally elusive and incredibly lightweight.
They’re so light that scientists are still working to pin down the masses of their three different types. They also continually morph from one of their three types into another—a behavior known as oscillation, one that keeps scientists on their toes.
“We don’t know what these masses are or have a clear understanding of the flavor oscillation,” says Stefania Bordoni, a CERN researcher working on neutrino detector development. “Learning more about neutrinos could help us better understand how the early universe evolved and why the world is made of matter and not antimatter.”
In 2015 CERN and the United States signed a new cooperation agreement that affirmed the United States’ continued participation in the Large Hadron Collider research program and CERN's commitment to serve as the European base for the US-hosted neutrino program. Since this agreement, CERN has been chugging full-speed ahead to build and refurbish neutrino detectors.
“Our past and continued partnerships have always shown the United States and CERN are stronger together,” says Marzio Nessi, the head of CERN’s neutrino platform. “Our big science project works only because of international collaboration.”
The primary goal of CERN’s neutrino platform is to provide the infrastructure to test two large prototypes for DUNE’s far detectors. The final detectors will be constructed at Sanford Lab in South Dakota. Eventually they will sit 1.5 kilometers underground, recording data from neutrinos generated 1300 kilometers away at Fermilab.
Two 8-meter-tall cubes, currently under construction at CERN, will each contain 770 metric tons of liquid argon permeated with a strong electric field. The international DUNE collaboration will construct two smaller, but still large, versions of the DUNE detector to be tested inside these cubes.
In the first version of the DUNE detector design, particles traveling through the liquid knock out a trail of electrons from argon atoms. This chain of electrons is sucked toward the 16,000 sensors lining the inside of the container. From this data, physicists can derive the trajectory and energy of the original particle.
In the second version, the DUNE collaboration is working on a new type of technology that introduces a thin layer of argon gas hovering above the liquid argon. The idea is that the additional gas will amplify the signal of these passing particles and give scientists a higher sensitivity to low-energy neutrinos. Scientists based at CERN are currently developing a 3-cubic-meter model, which they plan to scale up into the much larger prototype in 2017.
In addition to these DUNE prototypes, CERN is also refurbishing a neutrino detector, called ICARUS, which was used in a previous experiment at the Italian Institute for Nuclear Physics’ Gran Sasso National Laboratory in Italy. ICARUS will be shipped to Fermilab in March 2017 and incorporated into a separate experiment.
CERN plans to serve as a resource for neutrino programs hosted elsewhere in the world as scientists delve deeper into this enigmatic niche of particle physics.
A version of this article was published by Fermilab.
Anything to declare?
Sometimes being a physicist means giving detector parts the window seat.

John Conway knows the exact width of airplane aisles (15 inches). He also personally knows the Transportation Security Administration operations manager at Chicago’s O’Hare Airport. That’s because Conway has spent the last decade transporting extremely sensitive detector equipment in commercial airline cabins.
“We have a long history of shipping particle detectors through commercial carriers and having them arrive broken,” says Conway, who is a physicist at the University of California, Davis. “So in 2007 we decided to start carrying them ourselves. Our equipment is our baby, so who better to transport it than the people whose work depends on it?”
Their instrument isn’t musical, but it’s just as fragile and irreplaceable as a vintage Italian cello, and it travels the same way. Members of the collaboration for the CMS experiment at CERN research center tested different approaches for shipping the instrument by embedding accelerometers in the packages. Their best method for safety and cost-effectiveness? Reserving a seat on the plane for the delicate cargo.
In November Conway accompanied parts of the new CMS pixel detector from the Department of Energy's Fermi National Accelerator Laboratory in Chicago to CERN in Geneva. The pixels are very thin silicon chips mounted inside a long cylindrical tube. This new part will sit in the heart of the CMS experiment and record data from the high-energy particle collisions generated by the Large Hadron Collider.
“It functions like the sensor inside a digital camera,” Conway said, “except it has 45 megapixels and takes 40 million pictures every second.”
Scientists and engineers assembled and tested these delicate silicon disks at Fermilab before Conway and two colleagues escorted them to Geneva. The development and construction of the component pieces took place at Fermilab and universities around the United States.
Conway and his colleagues reserved each custom-made container its own economy seat and then accompanied these precious packages through check-in, security and all the way to their final destination at CERN. And although these packages did not leave Fermilab through the shipping department, each carried its own official paperwork.
“We’d get a lot of weird looks when rolling them onto the airplane,” Conway says. “One time the flight crew kept joking that we were transporting dinosaur eggs.”
After four trips by three people across the Atlantic, all 12 components of the US-built pixel detectors are at CERN and ready for integration with their European counterparts. This winter the completed new pixel detector will replace its time-worn predecessor currently inside the CMS detector.
A version of this article was published by Fermilab.
2016 year in particle physics
Scientists furthered studies of the Higgs boson, neutrinos, dark matter, dark energy and cosmic inflation and continued the search for undiscovered particles, forces and principles.

Working together, particle physicists from the US and around the globe made exciting advances this year in our understanding of the universe at the smallest and largest scales.
The LIGO experiment made the first detection of gravitational waves, originally predicted by Albert Einstein in 1916 in his general theory of relativity. And scientists have pushed closer to the next big discovery at experiments such as those at the Large Hadron Collider and at ultra-sensitive underground neutrino detectors.
The pursuit of particle physics is a truly international effort. It takes the combined resources and expertise of partnering nations to develop and use unique world-class facilities and advanced technology detectors.
Efforts in particle physics can be divided into five intertwined lines of inquiry: explorations of the Higgs boson, neutrinos, dark matter, cosmic acceleration and the unknown. Following this community vision enabled physicists to make major scientific advances in 2016 and set the stage for a fascinating future.
Using the Higgs boson as a new tool for discovery
The discovery of the Higgs boson in 2012 at the Large Hadron Collider at CERN opened a new door to understanding the universe. In 2016, the LHC produced roughly the same number of particle collisions that it did during all of its previous years of operation combined. At its current collision rate, it produces a Higgs boson about once per second.
While it will take time for the ATLAS and CMS experiment collaborations to digest this deluge of data, early results are already probing for any signs of unexpected Higgs boson behavior. In August, the ATLAS and CMS collaborations used data from the highest energy LHC collisions to “rediscover” the Higgs boson and confirm that it agrees with the predictions of the Standard Model of particle physics—so far. Deviations from the predictions would signal new physics beyond the Standard Model.
Since the LHC aims to continue running at its record pace for the next two years and more than double the delivered particle collisions to the experiments, this window to the universe is only beginning to open. The latest theoretical calculations of all of the major ways a Higgs boson can be produced and decay will enable rigorous new tests of the Standard Model.
US scientists are also ramping up efforts with their international partners to develop future upgrades for a High-Luminosity LHC that would provide 10 times the collisions and launch an era of high-precision Higgs-boson physics. Scientists have made significant progress this year in the development of more powerful superconducting magnets for the HL-LHC, including the production of a successful prototype that is currently the strongest accelerator magnet ever created.
Pursuing the physics associated with neutrino mass
In 2016, several experiments continued to study ghostly neutrinos—particles so pervasive and aloof that 100 trillion of them pass through you each second. In the late ’90s and early ’00s, experiments in Japan and Canada found proof that these peculiar particles have some mass and that they can transform between types of neutrino as they travel.
A global program of experiments aims to address numerous remaining questions about neutrinos. Long-baseline experiments study the particles as they fly through the earth between Tokai and Kamioka in Japan or between Illinois and Minnesota in the US. These experiments aim to discern what masses neutrinos have and whether there are differences between the transformations of neutrinos and their antimatter partners, antineutrinos.
In July, the T2K experiment in Japan announced that their data showed a possible difference between the rate at which a muon neutrino turns into an electron neutrino and the rate at which a muon antineutrino turns into an electron antineutrino. The T2K data hint at a combination of neutrino properties that would also give the NOvA experiment in the US their most favorable chance of making a discovery about neutrinos in the next few years.
In China, construction is underway for the Jiangmen Underground Neutrino Observatory, which will investigate neutrino mass in an effort to determine which neutrino is the lightest.
In the longer term, particle physicists aim to definitively determine these answers by hosting the world-class Long-Baseline Neutrino Facility, which would send a high-intensity neutrino beam 800 miles from Illinois to South Dakota. There, the international Deep Underground Neutrino Experiment a mile beneath the surface would enable precision neutrino science.
Identifying the new physics of dark matter
Overwhelming indirect evidence indicates that more than a quarter of the mass and energy in the observable universe is made up of an invisible substance called dark matter. But the nature of dark matter remains a mystery. Little is known about it other than that it interacts through gravity.
To guide the experimental search for dark matter, theorists have studied the possible interactions that known particles might have with a wide variety of potential dark matter candidates with possible masses ranging over more than a dozen orders of magnitude.
Huge sensitive detectors, such as the Large Underground Xenon, or LUX, experiment located a mile beneath the Black Hills of South Dakota, directly search for the dark matter particles that may be continually passing through Earth. This year, LUX completed the world’s most sensitive search for direct evidence of dark matter, improving upon its own previous world’s best search by a factor of four and narrowing the hiding space for an important class of theoretical dark matter particles.
In addition, data from the Fermi Gamma-ray Space Telescope and other facilities continued to tighten constraints on dark matter through indirect searches.
This sets the stage for a suite of complementary next-generation experiments—including LZ, SuperCDMS-SNOLAB and ADMX-G2 in the US—that aim to significantly improve sensitivity and reveal the nature of dark matter.
Understanding cosmic acceleration
Particle physicists turn to the sky in their efforts investigate a different mystery: Our universe is expanding at an accelerating rate. Scientists seek to understand the nature of dark energy, responsible for overcoming the force of gravity and pushing our universe apart.
Large-scale, ground-based cosmic surveys aim to measure the long-term expansion history of the universe and improve our understanding of dark energy. This year, scientists on the Baryon Oscillation Spectroscopic Survey used their final data set, comprising 1.5 million galaxies and quasars, to make improved measurements of the cosmological scale of the universe and the rate of cosmic structure growth. These measurements will allow theorists to test and refine models that aim to explain the origin of the current era of cosmic acceleration.
Through efforts that include private sector partnerships and international collaborations, US physicists aim to rapidly usher in the era of precision cosmology—and shed light on dark energy—with the ongoing Dark Energy Survey and the upcoming Dark Energy Spectroscopic Instrument and Large Synoptic Survey Telescope.
Community efforts are also underway to develop a next-generation cosmic microwave background experiment, CMB-S4. Precision measurements from CMB-S4 will not only advance dark energy studies and provide cosmic constraints on neutrino properties, but offer a way to probe the early era of cosmic acceleration known as inflation, which occurred at energies far greater than can be achieved in an accelerator on Earth.
Exploring the unknown
Oftentimes, results from an experiment show a hint of something new and unexpected, and scientists must design new technology to determine if what they’ve seen is real. But between 2015 and 2016, scientists at the LHC both raised and answered their own question.
In late 2015, LHC scientists found an unexpected bump in their data, a possible first hint of a new particle. Theorists were on the case; early in 2016 they laid the framework for possible interpretations of the data and explored how it might impact the Standard Model of particle physics. But in August, experimentalists had gathered enough new data to deem the hint a statistical fluctuation.
Stimulated by the discovery of pentaquark and tetraquark states, some theorists have predicted that bound states of four b quarks should soon be observable at the LHC.
Experimentalists continue to test theorists’ predictions against data by performing high-precision measurements or studying extremely rare particle decays at experiments such as the LHCb experiment at the LHC, the upcoming Belle II experiment in Japan and the Muon g-2 and Muon to Electron Conversion experiments at Fermi National Accelerator Laboratory.
Investing in the future of discovery science
The world-class facilities and experiments that enable the global program of particle physics are built on a foundation of advanced technology. Ongoing research and development of particle accelerator and detector technology seed the long-term future prospects for discovery.
In 2016, scientists and engineers continued to make advances in particle accelerator technology to prepare to build next-generation machines and possible far-future facilities.
Advances in the efficiency of superconducting radio-frequency cavities will lead to cost savings in building and operating machines such as the Linac Coherent Light Source II. In February, researchers at the Berkeley Lab Laser Accelerator, or BELLA, demonstrated the first multi-stage accelerator based on “tabletop” laser-plasma technology. This key step is necessary to push toward far-future particle colliders that could be thousands of times shorter than conventional accelerators.
These results reflect only a small portion of the total scientific output of the particle physics community in 2016. The stage is set for exciting discoveries that will advance our understanding of the universe.
The ABCs of Particle Physics board book
The ABCs of Particle Physics is currently available at public libraries and stores near Fermilab and SLAC.

For lovers of rhymes and anthropomorphic Higgs bosons, Symmetry presents its first published board book, The ABCs of Particle Physics. Use it as an illustrated guide to basic particle- and astrophysics terms, or read it to your infant at bedtime, if you don’t mind their first word being “quark.”
Find The ABCs of Particle Physics at these locations near Fermi National Accelerator Laboratory and SLAC National Accelerator Laboratory:
- Batavia Public Library
- CuriOdyssey
- Kepler's Books
- Lederman Science Center
- Menlo Park Library
- Stanford Bookstore
The ABCs of Particle Physics is not yet available online.
Symmetry is published by Fermilab and SLAC. The ABCs of Particle Physics is educational in nature and the national laboratories do not profit from its sale.
Physics books of 2016
As 2016 comes to a close, Symmetry writer Mike Perricone takes us through the latest additions to his collection of popular science books related to particle physics.

The year 2016 brought us books on topics such as gravitational waves, the “Pope” of physics, the history of science from the paper of record, and the concept of “now.”
Black Hole Blues, and Other Songs From Outer Space, by Janna Levin
The oldest sound scientists have ever heard was the “chirp” of gravitational waves emanating from a billions-of-years-old collision of two black holes. The sound was intercepted by the Laser Interferometer Gravitational-Wave Observatory, 40 years after the proposal for the detector was rejected.
With the deft touch of a novelist (A Madman Dreams of Turing Machines, How the Universe Got its Spots), Janna Levin, professor of physics and astronomy at Columbia University, follows the struggles of the project’s original 1970s troika—Rai Weiss, Ron Drever and theorist Kip Thorne—and the eventual success of director Barry Barish, who spent 1994 to 2004 putting the project on solid footing.
Seven Brief Lessons on Physics, by Carlo Rovelli
Carlo Rovelli, one of the founders of the loop quantum gravity theory and head of the quantum gravity group at the Centre de Physique Theorique of Aix-Marseille Université, takes readers through a history of physics from Einstein and Bohr to Heisenberg to Hawking.
Special acclaim goes to his translators, Simon Carnell and Erica Segre, who bring us phrases such as these from Rovelli’s original Italian: “[B]efore experiments, measurements, mathematics and rigorous deductions, science is above all about visions. Science begins with a vision. Scientific thought is fed by the capacity to ‘see’ things differently than they have previously been seen.” You’ll want to memorize this poetic gem.
The Pope of Physics: Enrico Fermi and the Birth of the Atomic Age, by Bettina Hoerlein and Gino Segré
Fermi method. Fermi questions. Fermi surface. Fermi sea. Fermions. Fermi Institute. Fermi Gamma-ray Space Telescope. Physicist Enrico Fermi, known in part for creating the world’s first nuclear reactor, definitely left his mark on physics.
Fermi won the Nobel Prize in 1938, and in the following years the prize went to no less than six of Fermi’s students. As a scientist, he was considered infallible: Colleagues and students in Rome dubbed him “the Pope.”
Co-authors Bettina Hoerlein and spouse Gino Segré—the nephew of Nobel Laureate Emilio Segré, Fermi’s student and lifelong friend—piece together a human picture of the brilliant scientist.
A Very Short Introduction to . . .
Part of a long-running and incredibly far-reaching series from Oxford University Press, Very Short Introductions combines sound science with brisk, accessible writing by eminent scientists. Averaging about 150 pages, this year’s top physics-related offerings include:
- Black Holes, by Katherine Blundell: What we know and don’t know about black holes; how they are created and discovered; separating fact from fiction. This title is especially timely this year with LIGO’s detection of gravitational waves from the collision of two black holes. Blundell is a Professor of Astronomy at Oxford.
- Astrophysics, by James Binney: The physics of supernovae, planetary systems, and the application of special and general relativity. Binney, an astronomer at Oxford University, has won the Maxwell and Dirac Medals.
- Copernicus, by Owen Gingerich: Regarded as the major authority on Copernicus, Gingerich places Copernicus in the context of his time and his place in the scientific revolution. Gingerich is Senior Astronomer Emeritus at Smithsonian Astrophysical Observatory.
The New York Times Book of Science: 150 Years of Science Reporting in the New York Times, Edited by David Corcoran, former editor of weekly Science Times
In this tour through a century and a half of science reporting by The New York Times, the sections on astronomy and physics are not to be missed.
From the archives come headlines such as “Star Birth Sudden, Lemaitre Asserts,” from a 1933 conference in Britain (with quotes from early cosmology luminaries William deSitter and Sir Arthur Eddington) and “Einstein Expounds His New Theory,” written in 1919. In the 1919 article, Einstein insists to the reporter endeavoring to explain his extraordinary concepts to lay readers, “I am trying to talk as plainly as possible.”
NOW: The Physics of Time, by Richard A. Muller
Einstein was somewhat casual about time, saying “The only reason for time is so that everything doesn’t happen at once.”
Richard Muller, experimental cosmologist, professor of physics at the University of California, Berkeley and author of Physics for Future Presidents, has more use for the concept. In this book, he explains that “the flow of time is the continual creation of new nows.” Muller takes on all comers and gets into plenty of arguments along the way.
Who Cares About Particle Physics? Making Sense of the Higgs Boson, the Large Hadron Collider and CERN, by Pauline Gagnon
Pauline Gagnon, an experimenter on the LHC’s CMS experiment, cut her teeth writing a widely read blog during the final two years of the search for the Higgs boson. In her first book, Gagnon explains the experimental process to non-scientists.
Each chapter concludes with summaries of key points, and in the final chapter, she assures readers the LHC is still in its early stages. Don’t miss the appendix on the possible (and probable) contributions to Einstein’s stunning early work by his first wife, Mileva Maric Einstein.
Welcome to the Universe: An Astrophysical Tour, by Neil deGrasse Tyson, Michael A. Struss and J. Richard Gott
Looking like a cross between a textbook and a coffee-table book, Welcome to the Universe is an extremely readable compilation of introductory astronomy lectures for non-science students given by Neil deGrasse Tyson, Michael A. Strauss and J. Richard Gott at Princeton University. Their talks present physics with clarity and a little levity—with references to pop culture items such as Toy Story and Bill and Ted’s Excellent Adventure. Gott even tackles time travel. What’s not to like?
The Cosmic Web: Mysterious Architecture of the Universe, by J. Richard Gott
J. Richard Gott was one of the first to describe the structure of the universe as being similar to a sponge, made up of holey surfaces divided into equal, interlocked parts. The concept may sound strange, but it has since been confirmed by numerous surveys of the sky.
A combination of anecdotes, physics and math, this one is a challenge. You’ll need your cosmic thinking cap.
13.8: The Quest to Find the True Age of the Universe and the Theory of Everything, by John Gribbin
Visiting Fellow in Astronomy at the University of Sussex in the UK and veteran science author John Gribbin (best known for In Search of Shrödinger’s Cat) wants to synthesize the great theories of the 20th century—general relativity and quantum mechanics—into his own search for a Theory of Everything.
In his explanation, related to the estimated age of the universe—13.8 billion years—Gribbin pays special attention to often-overlooked women scientists Henrietta Swan Leavitt (who proposed using Cepheid variable stars as standard candles) and Cecilia Payne (who first predicted that hydrogen was the most common element in the universe).
Science with sprinkles
Holiday guests will gravitate toward these physics cookies.

Want your holiday cookies to stand out this year among the usual snowflakes and Santa Clauses? Show your smarts with these scientific cookie decorations.
This winter, why not celebrate the recent discovery of gravitational waves? Albert Einstein first predicted them 100 years ago in his general theory of relativity. Now you can depict them in dessert form.
Two dark brown M&Ms in the center of this physics cookie represent massive black holes that merged billions of years ago in a collision whose impact was, according to Caltech physicist Kip Thorne, “50 times greater than all the power put out by all the stars in the universe put together.”
The swirl design of the pinwheel sugar cookie represents the resulting ripples in space-time, which eventually made their way to the twin detectors of the Laser Interferometer Gravitational-Wave Observatory. Sprinkles around the edge are just for show.
Neutrinos come in three types, appropriately called “flavors.” The symbol for neutrinos is the Greek letter “nu,” which resembles a lowercase “v.” Three nu’s, each drawn in a different flavor of icing, will fit perfectly on a snowflake- or flower-shaped cookie.
If you spin your cookie, you can observe a fascinating behavior of neutrinos: oscillation. Neutrinos change from one flavor into the other as they travel, a fact that might have influenced the evolution of our universe.
Just like snowflakes, neutrinos are elusive; even if you catch them you can’t enjoy them for long. But they are also one of the most abundant particles in the universe, so don’t skimp on the sprinkles.
To learn more about the building blocks of our universe, scientists build particle accelerators such as the Large Hadron Collider and cause particles to collide at velocities close to the speed of light. Huge detectors are built around collision points to spot new particles, such as the Higgs boson, that are created out of the impact’s energy.
What could be sweeter than a sugar cookie that depicts the beautiful layering of the cross-section of one of these gigantic detectors?
In 1977 John Ellis, a theoretical physicist, lost a bet in a pub to Melissa Franklin, same profession, and was compelled to use the word “penguin” in his next scientific publication.
He decided a drawing called a Feynman diagram—a way to sketch a particle decay process—somewhat resembled the flightless Antarctic bird. He dubbed the diagram for a decay of the bottom quark a “penguin diagram.” It caught on, and now the term is well known in the particle physics community.
If you happen to have a penguin cookie cutter, you’re in luck. Decorate it as you’d like (add a scarf if you want) and add the lines of the Feynman diagram in icing on top. See? It fits!
Now you can make a cookie that is not only delicious, but also shows how much we don’t know about the contents of our universe.
To make a universe cookie, cover 73 percent of it with Oreo chunks representing dark energy. Dark energy is responsible for the accelerating expansion of our universe, but there's a lot we don't know about it.
Cover another 23 percent of your cookie with glitter representing dark matter. Scientists have seen the gravitational effect of dark matter on galaxies and stars, but they’ve never seen it directly.
Cover the last 4 percent of your cookie with a tiny stripe of crushed peppermint representing the known matter in the universe. This includes all of the planets and stars that we can see.
These eye-catching physics cookies aren’t just delicious, they’re also great conversation-starters. So grab your mug of hot cocoa and be ready to talk about sprinkles, the universe and everything.
SESAME to open in 2017
The first synchrotron radiation source in the Middle East is running tests before its planned 2017 start.

Scientists and engineers at the first synchrotron radiation source in the Middle East have begun commissioning, a major milestone before officially starting operations in 2017.
When fully operational, the facility in Allan, Jordan, called SESAME, will mark a major victory for science in the region and also for its international backers. Like CERN, SESAME was established under the auspices of UNESCO, but it is now an independent intergovernmental organization and aims to facilitate peace through scientific collaboration that might supersede political divisions. Countries and labs the world over have responded to that vision by contributing to SESAME’s design, instrumentation and construction.
SESAME, which stands for The Synchrotron-light for Experimental Science and Applications in the Middle East, is a 133-meter circumference storage ring built to produce intense radiation ranging from infrared to X-rays, given off by electrons circling inside it at high energies. At the heart of SESAME are injector components from BESSY I, a Berlin-based synchrotron that was decommissioned in 1999, donated to SESAME and upgraded to support a completely new 2.5-GeV storage ring. With funding provided in part by the European Commission and construction led by CERN in collaboration with SESAME, the new ring is on par with most modern synchrotrons.
Now that the machine is largely complete, technicians can perform quality testing before researchers gain access and determine whether the light source can accomplish its scientific mission.
“The first scientific mission of SESAME is to promote excellence in science in the Middle East,” says Zehra Sayers, chair of SESAME’s scientific committee and also a faculty member at Sabanci University in Istanbul, Turkey.
Over the past decade, SESAME has organized regular users meetings each year to discuss and develop proposed research plans. That community is now over 200 strong. The international facility hosts members from Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority and Turkey.
“It is very important for us to be able to perform high quality science at SESAME,” Sayers says. “Because that is what will make it viable, only then people will want to come here to do experiments, and only then people will think that this is really where they can find answers to their questions.”
Dozens of synchrotrons in other locations throughout the world have already proven themselves as research hubs. Synchrotrons create ultra-bright light radiation and channel it into instruments used for advanced imaging research, with applications ranging from materials science to drug discovery.
No synchrotrons existed in the Middle East until now. Political turbulence can make access to other facilities abroad challenging. Sayers says she is confident that SESAME will fill the need for a local laboratory.
The new facility creates an opportunity for regional scientists to collaborate, for example, to study shared cultural heritage. The SESAME light source will be used to identify materials in ancient, cultural artifacts such as textiles and dyes, parchments and inks, and could reveal new information about how the materials were originally prepared.
Researchers will initially have access to two beamlines of different wavelengths when operations begin. The facility has capacity for 25 beamlines, and it is expected that within a year two more beamlines will become available. As beamlines are added, the number of applications will grow to encompass diverse fields such as archeology, molecular biology, materials science and environmental science.
The potential diversity is one of SESAME’s greatest strengths, says Maher Attal, who is coordinating the commissioning process. Twelve straight sections of the machine have the capacity for installing insertion devices, series of small dipole magnets that tune the spectrum of the emitted synchrotron light. This makes SESAME a “third generation” light source. SESAME’s materials science beamline, which will come into operation in 2017 or 2018 will be the first to be supplied with light from such a device.
SESAME is undergoing a period of testing and quality control that usually takes several months. After technicians install and test the individual components, they will guide the beam through the whole machine at low energy to allow scientists to perfect its alignment, then to make measurements and corrections if its performance deviates too far from predicted values. The machine then must pass the same inspections at its maximum energy before the synchrotron officially opens.
“We expect to deliver the first photon beam to the users in April 2017,” Attal says.
Scientists will be watching and waiting.
“We owe it to the region to make SESAME a success,” Sayers says. “It will be a ray of hope in a time of turmoil.”
A syllabus in cosmic rays
What have scientists learned in five years of studying cosmic rays with the Alpha Magnetic Spectrometer experiment?

On May 19, 2011, astronauts used a remote-controlled robotic arm to attach a nearly 17,000-pound payload to the side of the International Space Station. That payload was the Alpha Magnetic Spectrometer, or AMS-02, an international experiment sponsored by the US Department of Energy and NASA.
AMS was designed to detect cosmic rays, highly energetic particles and nuclei that bombard the Earth from space. Since its installation, AMS has collected data from more than 90 billion cosmic ray events, experiment lead Sam Ting reported today in a colloquium at the experiment’s headquarters, CERN European research center.
Ting, a Nobel Laureate and Thomas Dudley Cabot Professor of Physics at the Massachusetts Institute of Technology, shared a mix of new and recent results during his talk. Together they spelled out the persistent message of the AMS experiment: We have a lot left to learn from cosmic rays.
For one, cosmic rays could tell us about the imbalance between matter and antimatter in the universe.
Because matter and antimatter particles are created in pairs, scientists think the Big Bang should have produced half of each. But those evenly matched partners would have annihilated one another, and we would not exist.
The generally accepted theory is that this imbalance came about thanks to processes in the very young universe that favor matter over antimatter. But an alternative idea is that a large amount of antimatter is still out there; it just hasn’t had a chance to collide with our matter-filled universe.
One clue that this is the case would be finding an antimatter nucleus in the wild.
With the negligible amount of antimatter that exists in our universe, “it’s almost impossible to make anything bigger than a proton,” says AMS Deputy Principal Investigator Mike Capell of MIT. “Getting the antimatter together to collide into an antihelium or anticarbon nucleus is not very probable.”
AMS scientists do not claim to have detected antihelium, but they did announce that they have not ruled out “a few” candidate events.
“Given the success of the standard cosmological model and the absence of gamma rays from hypothetical matter-antimatter interfaces, I think it’s very implausible that there’d be whole galaxies made of antimatter,” says theoretical astrophysicist Roger Blandford of the Kavli Institute for Particle Astrophysics and Cosmology, a joint institute of Stanford University and SLAC National Accelerator Laboratory. “But it’s the sort of investigation that could still give us a surprising discovery.”
Cosmic rays could also tell us something about dark matter, which has never been detected directly.
Cosmic rays can consist of a variety of particles, such as electrons or their antimatter counterparts, positrons. In previous measurements, AMS detected a surprising number of positrons on the higher end of its energy range. It is possible that collisions between dark matter particles created this excess of antimatter particles.
An updated analysis—this one using almost double the number of electrons and positrons—continues to show this excess. But dark matter isn’t the only possible cause, Blandford says.
“One interpretation is that one is seeing the annihilation of dark matter particles,” he says. “But there might be equally reasonable explanations associated with traditional astrophysics that could make the same sort of signal.”
Pulsars are a particularly difficult alternative source to rule out. But AMS scientists anticipate that they will collect enough data to better discriminate between models by 2024, Ting said in his presentation.
Cosmic rays could tell us about their history.
As particles in cosmic rays approach light speed, time effectively slows down for them, as Albert Einstein predicted in his theory of relativity. We can see evidence of time dilation in the extended lifetimes of particles traveling near light speed.
In a forthcoming AMS result, scientists look at just how much the lifetimes of isotopes of beryllium stretch as they travel in cosmic rays. Based on that measurement, they estimate the cosmic rays we see in our galaxy are about 12 million years old.
Cosmic rays could tell us about what they go through on their trip to Earth.
Both observation and theory have a ways to go in this area, Blandford says. “They are both works in progress and, despite great advances, we still do not understand how cosmic rays propagate from their sources—mainly supernova remnants—to Earth. ”
When cosmic rays get into collisions, they can produce secondary cosmic rays, which are made up of different ingredients. In a recently published result studying the ratio of boron (found only in secondary cosmic rays) to carbon (found in primary cosmic rays) at different energies, AMS scientists found possible evidence of turbulence in the cosmic rays’ path to our planet—but nothing that would explain the positron excess.
Finally, cosmic rays could tell us that we don’t know what we think we know.
In an unpublished analysis, AMS scientists found that their measurements of the spectra and ratios of different nuclei—protons, lithium and helium—did not fit well with predictions. This could mean that scientists’ assumptions about cosmic rays need to be reexamined.
AMS scientists want to help with that. They plan to collect data from hundreds of billions of primary cosmic rays in the coming years as their experiment continues its orbit about 240 miles above the Earth.