symmetry

Howie Day records love song to physics

After the musician learned that grad students at CERN had created a parody of his 2004 single “Collide,” he flew to Switzerland to sing it at the LHC.

Howie Day plays a song at CERN

Singer-songwriter Howie Day was sitting in a coffee shop in Denver one morning while on tour when he saw the Twitter notifications: CERN had shared a parody video of his hit song “Collide,” sung from the perspective of a proton in the Large Hadron Collider.

Sarah Charley, US communications manager for the LHC experiments, had come up with the idea for the video. She created it with the help of graduate students Jesse Heilman of the University of California, Riverside and Tom Perry and Laser Seymour Kaplan of the University of Wisconsin, Madison.

They spent lunches and coffee breaks workshopping their new version of the lyrics, which were originally about two people falling in love despite their differences. They spent a combined 20 hours in CERN’s editing studio recording the vocals and instrumentation of the track. Then they wandered around the laboratory for a full Saturday, filming at various sites. Charley edited the footage together.

“I was flattered, and it was quite funny, too,” Day says of seeing the video for the first time. “I immediately retweeted it and then sent a direct message inquiring about a visit. I figured it was a long shot, but why not?”

That started a conversation that led to Day planning a visit to CERN and booking time in his studio to re-record the song from the ground up with the new lyrics. “It was about the most fun I've ever had in the studio,” Day says. “We literally laughed all day long. I sent the track off to CERN with the note, ‘Should we make another music video?’”

The answer was yes.

While at CERN, Day spent two days visiting the ATLAS and CMS experiments, the CERN Data Centre and the SM18 magnet-testing facility. He also was given the rare opportunity to travel down into the LHC tunnel. CERN’s video crew tagged along to film him at the various sites.

“Going down into the LHC tunnel was a once in a lifetime opportunity, and it felt that way. It was like seeing the northern lights, or playing the Tonight Show, or bringing a new puppy home.”

Day, who says he has always been fascinated by the “why” of things, had been aware of CERN before this project, but he had only a rough idea of what went on there. He says that it wasn’t until he got there that things started to make sense.

“Obviously nothing can prepare you for the sheer scale of the place, but also the people who worked there were amazing,” Day says. “I felt completely overwhelmed and humbled the entire time. It was truly great to be working at the site where humans may make the most important scientific discoveries of our lifetime.”

Heilman, now a postdoctoral researcher at Carleton University, says that he saw the song as a way to reach out to people outside the culture of academia.

“All of us have been steeped in the science for so long that we sort of forget how to speak a language,” he says. “It's always important for academics and researchers to learn different ways to communicate what we’re doing because we’re doing it for people and for society.”

There’s a point in the original song where there’s an emotional build, he says, and Day sings, “I’ve found I’m scared to know, I’m always on your mind.”

The parody uses that part of the song to express the hopes and fears of experimentalists looking for evidence that might not ever appear.

“We're all experimentalists, so we will all spend our careers searching for something,” Heilman says. “The feeling is that [the theory of] supersymmetry, while it's this thing that everybody's been so excited about for a long time, really doesn’t seem that likely to a lot of us anymore because we’re eliminating a lot of the phase space. It's sort of like this white whale hunt. And so our lyrics, ‘Can SUSY still be found?’ is this emotional cry to the physics.”

Charley says she hopes that, through the video, they’re able to “reach and touch people with the science who we normally can't talk to.”

“I think you can appreciate something without fully understanding it,” she says. “As someone who is a professional science communicator, that's always the line I'm walking: trying to find ways that people can appreciate and understand and value something without needing to get a PhD. You can't devote your life to everything, but you can still have an appreciation for things in the world outside your own specific field.”

Continue reading

African School works to develop local expertise

Universities in sub-Saharan Africa are teaming up to offer free training to students interested in fundamental physics.

Header_2:African School

Last Feremenga was born in a small town in Zimbabwe. As a high school student in a specialized school in the capital, Harare, he was drawn to the study of physics.

“Physics was at the top of my list of potential academic fields to pursue,” he says.

But with limited opportunities nearby, that was going to require a lot of travel.

With help from the US Education Assistance Center at the American Embassy in Harare, Feremenga was accepted at the University of Chicago in 2007. As an undergraduate, he conducted research for a year at the nearby US Department of Energy’s Fermi National Accelerator Laboratory.

Then, through the University of Texas at Arlington, he became one of just a handful of African nationals to conduct research as a user at European research center CERN. Feremenga joined the ATLAS experiment at the Large Hadron Collider. He spent his grad-school years traveling between CERN and Argonne National Laboratory near Chicago, analyzing hundreds of terabytes of ATLAS data.

“I became interested in solving problems across diverse disciplines, not just physics,” he says.

“At CERN and Argonne, I assisted in developing a system that filters interesting events from large data-sets. I also analyzed these large datasets to find interesting physics patterns.”

Inline_1:African School
The African School of Fundamental Physics and Applications

In December 2016, he received his PhD. In February 2017, he accepted a job at technology firm Digital Reasoning in Nashville, Tennessee.

To pursue particle physics, Feremenga needed to spend the entirety of his higher education outside Zimbabwe. Only one activity brought him even within the same continent as his home: the African School of Fundamental Physics and Applications. Feremenga attended the school in the program’s inaugural year at South Africa’s Stellenbosch University.

The ASP received funding for a year from France’s Centre National de la Recherche Scientific (CNRS) in 2008. Since then, major supporters among 20 funding institutions have included the International Center for Theoretical Physics (ICTP) in Trieste, Italy; the South African National Research Foundation, and department of Science and Technology; and the South African Institute of Physics. Other major supporters have included CERN, the US National Science Foundation and the University of Rwanda.

The free, three-week ASP has been held bi-annually since 2010. Targeting students in sub-Saharan Africa, the school has been held in South Africa, Ghana, Senegal and Rwanda. The 2018 School is slated to take place in Namibia. Thanks to outreach efforts, applications have risen from 125 in 2010 to 439 in 2016.

Inline_2:African School
The African School of Fundamental Physics and Applications

The free, three-week ASP has been held bi-annually since 2010. Targeting students in sub-Saharan Africa, the school has been held in South Africa, Ghana, Senegal and Rwanda. The 2018 School is slated to take place in Namibia. Thanks to outreach efforts, applications have risen from 125 in 2010 to 439 in 2016.

The 50 to 80 students selected for the school must have a minimum of a 3-year university education in math, physics, engineering and/or computer science. The first week of the school focuses on theoretical physics; the second week, experimental physics; the third week, physics applications and high-performance computing.

School organizers stay in touch to support alumni in pursuing higher education, says organizer Ketevi Assamagan. “We maintain contact with the students and help them as much as we can,” Assamagan says. “ASP alumni are pursuing higher education in Africa, Asia, Europe and the US.”

Assamagan, originally from Togo but now a US citizen, worked on the Higgs hunt with the ATLAS experiment. He is currently at Brookhaven National Lab in New York, which supports him devoting 10 percent of his time to the ASP.

While sub-Saharan countries are just beginning to close the gap in physics, there is one well-established accelerator complex in South Africa, operated by the iThemba LABS of Cape Town and Johannesburg. The 30-year-old Separated-Sector Cyclotron, which primarily produces particle beams for nuclear research and for training at the postdoc level, is the largest accelerator of its kind in the southern hemisphere.

Jonathan Dorfan, former Director of SLAC National Accelerator Laboratory and a native of South Africa, attended University of Cape Town. Dorfan recalls that after his Bachelor’s and Master’s degrees, the best PhD opportunities were in the US or Britain. He says he’s hopeful that that outlook could one day change.

Organizers of the African School of Fundamental Physics and Applications continue reaching out to students on the continent in the hopes that one day, someone like Feremenga won’t have to travel across the world to pursue particle physics.

Continue reading

A speed trap for dark matter, revisited

A NASA rocket experiment could use the Doppler effect to look for signs of dark matter in mysterious X-ray emissions from space.

Image of stars and reddish, glowing clouds of dust at the center of the Milky Way Galaxy

Researchers who hoped to look for signs of dark matter particles in data from the Japanese ASTRO-H/Hitomi satellite suffered a setback last year when the satellite malfunctioned and died just a month after launch.

Now the idea may get a second chance.

In a new paper, published in Physical Review D, scientists from the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), a joint institute of Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory, suggest that their novel search method could work just as well with the future NASA-funded Micro-X rocket experiment—an X-ray space telescope attached to a research rocket.

The search method looks for a difference in the Doppler shifts produced by movements of dark matter and regular matter, says Devon Powell, a graduate student at KIPAC and lead author on the paper with co-authors Ranjan Laha, Kenny Ng and Tom Abel.

The Doppler effect is a shift in the frequency of sound or light as its source moves toward or away from an observer. The rising and falling pitch of a passing train whistle is a familiar example, and the radar guns that cops use to catch speeders also work on this principle.

The dark matter search technique, called Dark Matter Velocity Spectroscopy, is like setting up a speed trap to “catch” dark matter.

“We think that dark matter has zero averaged velocity, while our solar system is moving,” says Laha, who is a postdoc at KIPAC.  “Due to this relative motion, the dark matter signal would experience a Doppler shift. However, it would be completely different than the Doppler shifts from signals coming from astrophysical objects because those objects typically co-rotate around the center of the galaxy with the sun, and dark matter doesn’t. This means we should be able to distinguish the Doppler signatures from dark and regular matter.”

Researchers would look for subtle frequency shifts in measurements of a mysterious X-ray emission. This 3500-electronvolt (3.5 keV) emission line, observed in data from the European XMM-Newton spacecraft and NASA’s Chandra X-ray Observatory, is hard to explain with known astrophysical processes. Some say it could be a sign of hypothetical dark matter particles called sterile neutrinos decaying in space.

“The challenge is to find out whether the X-ray line is due to dark matter or other astrophysical sources,” Powell says. “We’re looking for ways to tell the difference.”

The idea for this approach is not new: Laha and others described the method in a research paper last year, in which they suggested using X-ray data from Hitomi to do the Doppler shift comparison. Although the spacecraft sent some data home before it disintegrated, it did not see any sign of the 3.5-keV signal, casting doubt on the interpretation that it might be produced by the decay of dark matter particles. The Dark Matter Velocity Spectroscopy method was never applied, and the issue was never settled.  

In the future Micro-X experiment, a rocket will catapult a small telescope above Earth’s atmosphere for about five minutes to collect X-ray signals from a specific direction in the sky. The experiment will then parachute back to the ground to be recovered. The researchers hope that Micro-X will do several flights to set up a speed trap for dark matter.

Illustration of a research rocket catapulting an experiment above Earth’s atmosphere
Jeremy Stoller, NASA

“We expect the energy shifts of dark matter signals to be very small because our solar system moves relatively slowly,” Laha says. “That’s why we need cutting-edge instruments with superb energy resolution. Our study shows that Dark Matter Velocity Spectroscopy could be successfully done with Micro-X, and we propose six different pointing directions away from the center of the Milky Way.”

Esra Bulbul from the MIT Kavli Institute for Astrophysics and Space Research, who wasn’t involved in the study, says, “In the absence of Hitomi observations, the technique outlined for Micro-X provides a promising alternative for testing the dark matter origin of the 3.5-keV line.” But Bulbul, who was the lead author of the paper that first reported the mystery X-ray signal in superimposed data of 73 galaxy clusters, also points out that the Micro-X analysis would be limited to our own galaxy.

The feasibility study for Micro-X is more detailed than the prior analysis for Hitomi. “The earlier paper used certain approximations—for instance, that the dark matter halos of galaxies are spherical, which we know isn’t true,” Powell says. “This time we ran computer simulations without this approximation and predicted very precisely what Micro-X would actually see.”

The authors say their method is not restricted to the 3.5-keV line and can be applied to any sharp signal potentially associated with dark matter. They hope that Micro-X will do the first practice test. Their wish might soon come true.

“We really like the idea presented in the paper,” says Enectali Figueroa-Feliciano, the principal investigator for Micro-X at Northwestern University, who was not involved in the study. “We would look at the center of the Milky Way first, where dark matter is most concentrated. If we saw an unidentified line and it were strong enough, looking for Doppler shifts away from the center would be the next step.”  

Continue reading

From the cornfield to the cosmos

Fermilab celebrates 50 years of discovery.

Collage: 50 years of Fermilab

Imagine how it must have felt to be Robert Wilson in the spring of 1967. The Atomic Energy Commission had hired him as the founding director of the planned National Accelerator Laboratory. Before him was the opportunity to build the most powerful particle accelerator in the world—and to create a great new American laboratory dedicated to giving scientists extraordinary new capabilities to explore the universe. 

Fifty years later, we marvel at the boldness and scope of the project, and at the freedom, the leadership, the confidence and the vision that it took to conceive and build it. If anyone was up for the challenge, it was Wilson. 

By the early 1960s, the science of particle physics had outgrown its birthplace in university laboratories. The accelerators and detectors for advancing research had grown too big, complex and costly for any university to build and operate alone. Particle physics required a new model: national laboratories where the resources of the federal government would bring together the intellectual, scientific, engineering, technical and management capabilities to give collaborations of scientists the ability to explore scientific questions that could no longer be addressed at individual universities. 

The NAL, later renamed Fermi National Accelerator Laboratory, would be a national facility where university physicists—“users”—would be “at home and loved,” in the words of physicist Leon Lederman, who eventually succeeded Wilson as Fermilab director. The NAL would be a truly national laboratory rising from the cornfields west of Chicago, open to scientists from across the country and around the world. 

The Manhattan Project in the 1940s had shown the young Wilson—had shown the entire nation—what teams of physicists and engineers could achieve when, with the federal government’s support, they devoted their energy and capability to a common goal. Now, Wilson could use his skills as an accelerator designer and builder, along with his ability to lead and inspire others, to beat the sword of his Manhattan Project experience into the plowshare of a laboratory devoted to peacetime physics research.  

When the Atomic Energy Commission chose Wilson as NAL’s director, they may have been unaware that they had hired not only a gifted accelerator physicist but also a sculptor, an architect, an environmentalist, a penny-pincher (that they would have liked), an iconoclast, an advocate for human rights, a Wyoming cowboy and a visionary. 

Over the dozen years of his tenure Wilson would not only oversee the construction of the world’s most powerful particle accelerator, on time and under budget, and set the stage for the next generation of accelerators. He would also shape the laboratory with a vision that included erecting a high-rise building inspired by a French cathedral, painting other buildings to look like children’s building blocks, restoring a tall-grass prairie, fostering a herd of bison, designing an 847-seat auditorium (a venue for culture in the outskirts of Chicago), and adorning the site with sculptures he created himself. 

Fermilab physicist Roger Dixon tells of a student who worked for him in the lab’s early days.

“One night,” Dixon remembers, “I had Chris working overtime in a basement machine shop. He noticed someone across the way grinding and welding. When the guy tipped back his helmet to examine his work, Chris walked over and asked, ‘What’ve they got you doin’ in here tonight?’ The man said that he was working on a sculpture to go into the reflecting pond in front of the high rise. ‘Boy,’ Chris said, ‘they can think of more ways for you to waste your time around here, can’t they?’ To which Robert Wilson, welder, sculptor and laboratory director, responded with remarks Chris will never forget on the relationship of science, technology and art.”

Wilson believed a great physics laboratory should look beautiful. “It seemed to me,” he wrote, “that the conditions of its being a beautiful laboratory were the same conditions as its being a successful laboratory.”

With the passage of years, Wilson’s outsize personality and gift for eloquence have given his role in Fermilab’s genesis a near-mythic stature. In reality, of course, he had help. He used his genius for bringing together the right people with the right skills and knowledge at the right time to recruit and inspire scientists, engineers, technicians, administrators (and an artist) not only to build the laboratory but also to stick around and operate it. Later, these Fermilab pioneers recalled the laboratory’s early days as a golden age, when they worked all hours of the day and night and everyone felt like family. 

By 1972, the Main Ring of the laboratory’s accelerator complex was sending protons to the first university users, and experiments proliferated in the laboratory’s particle beams. In July 1977, Experiment E-288, a collaboration Lederman led, discovered the bottom quark. 

Physicist Patty McBride, who heads Fermilab’s Particle Physics Division, came to Fermilab in 1979 as a Yale graduate student. McBride’s most vivid memory of her early days at the laboratory is meeting people with a wide variety of life experiences. 

“True, there were almost no women,” she says. “But out in this lab on the prairie were people from far more diverse backgrounds than I had ever encountered before. Some, including many of the skilled technicians, had returned from serving in the Vietnam War. Most of the administrative staff were at least bilingual. We always had Russian colleagues; in fact the first Fermilab experiment, E-36, at the height of the Cold War, was a collaboration between Russian and American physicists. I worked with a couple of guest scientists who came to Fermilab from China. They were part of a group who were preparing to build a new accelerator at the Institute of High Energy Physics there.” 

The diversity McBride found was another manifestation of Wilson’s concept of a great laboratory.

“Prejudice has no place in the pursuit of knowledge,” he wrote. “In any conflict between technical expediency and human rights, we shall stand firmly on the side of human rights. Our support of the rights of the members of minority groups in our laboratory and its environs is inextricably intertwined with our goal of creating a new center of technical and scientific excellence.”

Designing the future

Advances in particle physics depend on parallel advances in accelerator technology. Part of an accelerator laboratory’s charge is to develop better accelerators—at least that’s how Wilson saw it. With the Main Ring delivering beam, it was time to turn to the next challenge. This time, he had a working laboratory to help.  

The designers of Fermilab’s first accelerator had hoped to use superconducting magnets for the Main Ring, but they soon realized that in 1967 it was not yet technically feasible. Nevertheless, they left room in the Main Ring tunnel for a next-generation accelerator. 

Wilson applied his teambuilding gifts to developing this new machine, christened the Energy Doubler (and later renamed the Tevatron). 

In 1972, he brought together an informal working group of metallurgists, magnet builders, materials scientists, physicists and engineers to begin investigating superconductivity, with the goal of putting this exotic phenomenon to work in accelerator magnets. 

No one had more to do with the success of the superconducting magnets than Fermilab physicist Alvin Tollestrup. Times were different then, he recalls.

“Bob had scraped up enough money from here and there to get started on pursuing the Doubler before it was officially approved,” Tollestrup says. “We had to fight tooth and nail for approval. But in those days, Bob could point the whole machine shop to do what we needed. They could build a model magnet in a week.”

It took a decade of strenuous effort to develop the superconducting wire, the cable configuration, the magnet design and the manufacturing processes to bring the world’s first large-scale superconducting accelerator magnets into production, establishing Fermilab’s leadership in accelerator technology. Those involved say they remember it as an exhilarating experience. 

By March 1983, the Tevatron magnets were installed underneath the Main Ring, and in July the proton beam in the Tevatron reached a world-record energy of 512 billion electronvolts. In 1985, a new Antiproton Source enabled proton-antiproton collisions that further expanded the horizons of the subatomic world. 

Two particle detectors—called the Collider Detector at Fermilab, or CDF, and DZero—gave hundreds of collaborating physicists the means to explore this new scientific territory. Design for CDF began in 1978, construction in 1982, and CDF physicists detected particle collisions in 1985. Fermilab’s current director, Nigel Lockyer, first came to work at Fermilab on CDF in 1984. 

“The sheer ambition of the CDF detector was enough to keep everyone excited,” he says. 

The DZero detector came online in 1992. A primary goal for both experiments was the discovery of the top quark, the heavier partner of the bottom quark and the last undiscovered quark of the six that theory predicted. Both collaborations worked feverishly to be the first to accumulate enough evidence for a discovery. 

In March 1995, CDF and DZero jointly announced that they had found the top. To spread the news, Fermilab communicators tried out a fledgling new medium called the World Wide Web.

Five decades of particle physics

1967

First day NAL employees started work in Illinois

Background texture

1968

Groundbreaking for the Linac

First NAL Users Meeting

Background texture

1969

First bison arrive at NAL

Background texture

1971

Fermilab theorists discover the seeds of superstring theory

Background texture

1972

Fermilab experimental program begins with experiment E-36 in 100 GeV beam

Background texture

1973

First tracks in the 15-foot bubble chamber

Background texture

1974

The National Accelerator Laboratory renamed Fermi National Accelerator Laboratory

Background texture

1977

Discovery of the bottom quark by the E-288 collaboration

The Department of Energy forms

Background texture

1980

The High Rise renamed Wilson Hall after founding director Robert Wilson

Background texture

1983

Tevatron propels protons to 512 GeV, setting world record

Background texture

1984

Fermilab theorists elucidate the science case for high-energy hadron colliders such as the LHC

Fermilab’s accelerator, previously the Energy Doubler / Saver, is renamed the Tevatron

Background texture

1985

CDF detector observes first proton-antiproton collisions

Background texture

1988

Feynman Computing Center dedication

Background texture

1992

DZero observes first collisions

Background texture

1995

Discovery of the top quark by CDF and DZero

Background texture

1998

Sloan Digital Sky Survey sees first light

Background texture

1999

Evidence of CP violation in neutral B mesons reported by CDF

Fermilab’s KTeV and CERN’s NA48 experiments establish the existence of direct CP violation in kaon decays

Dedication of the Main Injector and Antiproton Recycler accelerators

Background texture

2000

DONUT collaboration announces direct evidence for tau neutrino

Background texture

2005

MINOS begins operation in Illinois and Minnesota using new NuMI beam

Background texture

2012

Discovery of the Higgs boson by the ATLAS and CMS experiments

Dark Energy Survey receives first light

Background texture

2013

Muon g-2 ring arrives from Brookhaven National Laboratory

NOνA Far Detector records first neutrino

Background texture

2015

DUNE Collaboration forms

Background texture

2017

Fermilab’s 50th Anniversary Symposium and 50th Users Meeting

Background texture
  1. 1967
  2. 1968
  3. 1969
  4. 1970
  5. 1971
  6. 1972
  7. 1973
  8. 1974
  9. 1975
    1976
  10. 1977
  11. 1978
    1979
  12. 1980
  13. 1981
    1982
  14. 1983
  15. 1984
  16. 1985
  17. 1986
    1987
  18. 1988
  19. 1989
    1990
    1991
  20. 1992
  21. 1993
    1994
  22. 1995
  23. 1995
    1996
  24. 1998
  25. 1999
  26. 2000
  27. 2001
    2002
    2003
    2004
  28. 2005
  29. 2006
    2007
    2008
    2009
    2010
    2011
  30. 2012
  31. 2013
  32. 2014
  33. 2015
  34. 2016
  35. 2017
Previous Next

Reaching new frontiers

Meanwhile, in the 1980s, growing recognition of the links between subatomic interactions and cosmology—between the inner space of particle physics and the outer space of astrophysics—led to the formation of the Fermilab Theoretical Astrophysics Group, pioneered by cosmologists Rocky Kolb and Michael Turner. Cosmology’s rapid evolution from theoretical endeavor to experimental science demanded large collaborations and instruments of increasing complexity and scale, beyond the resources of universities—a problem that particle physics knew how to solve. 

In the mid-1990s, the Sloan Digital Sky Survey turned to Fermilab for help. Under the leadership of former Fermilab Director John Peoples, who became SDSS director in 1998, the Sky Survey carried out the largest astronomical survey ever conducted and transformed the science of astrophysics.  

The discovery of cosmological evidence of dark matter and dark energy had profound implications for particle physics, revealing a mysterious new layer to the universe and raising critical scientific questions. What are the particles of dark matter? What is dark energy? In 2004, in recognition of Fermilab’s role in particle astrophysics, the laboratory established the Center for Particle Astrophysics. 

As the twentieth century ended and the twenty-first began, Fermilab’s Tevatron experiments defined the frontier of high-energy physics research. Theory had long predicted the existence of a heavy particle associated with particle mass, the Higgs boson, but no one had yet seen it. In the quest for the Higgs, Fermilab scientists and experimenters made a relentless effort to wring every ounce of performance from accelerator and detectors. 

The Tevatron had reached maximum energy, but in 1999 a new accelerator in the Fermilab complex, the Main Injector, began giving an additional boost to particles before they entered the Tevatron ring, significantly increasing the rate of particle collisions. The experiments continuously re-invented themselves using advances in detector and computing technology to squeeze out every last drop of data. They were under pressure, because the clock was ticking.  

A new accelerator with seven times the Tevatron’s energy was under construction at CERN, the European laboratory for particle physics in Geneva, Switzerland. When Large Hadron Collider operations began, its higher-energy collisions and state-of-the-art detectors would eclipse Fermilab’s experiments and mark the end of the Tevatron’s long run.

In the early 1990s, the Tevatron had survived what many viewed as a near-death experience with the cancellation of the Superconducting Super Collider, planned as a 26-mile ring that would surpass Fermilab’s accelerator, generating beams with 20 times as much energy. Construction began on the SSC’s Texas site in 1991, but in 1993 Congress canceled funding for the multibillion-dollar project. Its demise meant that, for the time being, the high-energy frontier would remain in Illinois. 

While the SSC drama unfolded, in Geneva the construction of the LHC went steadily onward—helped and supported by US physicists and engineers and by US funding. 

Among the more puzzling aspects of particle physics for those outside the field is the simultaneous competition and collaboration of scientists and laboratories. It makes perfect sense to physicists, however, because science is the goal. The pursuit of discovery drives the advancement of technology. Particle physicists have decades of experience in working collaboratively to develop the tools for the next generation of experiments, wherever in the world that takes them. 

Thus, even as the Tevatron experiments threw everything they had into the search for the Higgs, scientists and engineers at Fermilab—literally across the street from the CDF detector—were building advanced components for the CERN accelerator that would ultimately shut the Tevatron down.  

Going global

Just as in the 1960s particle accelerators had outgrown the resources of any university, by the end of the century they had outgrown the resources of any one country to build and operate. Detectors had long been international construction projects; now accelerators were, too, as attested by the superconducting magnets accumulating at Fermilab, ready for shipment to Switzerland.

As the US host for CERN’s CMS experiment, Fermilab built an LHC Remote Operations Center so that the growing number of US collaborating physicists could work on the experiment remotely. In the early morning hours of September 10, 2008, a crowd of observers watched on screens in the ROC as the first particle beam circulated in the LHC. Four years later, the CMS and ATLAS experiments announced the discovery of the Higgs boson. One era had ended, and a new one had begun. 

The future of twenty-first century particle physics, and Fermilab’s future, will unfold in a completely global context. More than half of US particle physicists carry out their research at LHC experiments. Now, the same model of international collaboration will create another pathway to discovery, through the physics of neutrinos. Fermilab is hosting the international Deep Underground Neutrino Experiment, powered by the Long-Baseline Neutrino Facility that will send the world’s most powerful beam of neutrinos through the earth to a detector more than a kilometer underground and 1300 kilometers away in the Sanford Underground Research Facility in South Dakota. 

“We are following the CERN model,” Lockyer says. “We have split the DUNE project into an accelerator facility and an experiment. Seventy-five percent of the facility will be built by the US, and 25 percent by international collaborators. For the experiment, the percentages will be reversed.” 

The DUNE collaboration now comprises more than 950 scientists from 162 institutions in 30 countries. “To design the project,” Lockyer says, “we started with a clean piece of paper and all of our international collaborators and their funding agencies in the room. They have been involved since t=0.”

In Lockyer’s model for Fermilab, the laboratory will keep its historic academic focus, giving scientists the tools to address the most compelling scientific questions. He envisions a diverse science portfolio with a flagship neutrino program and layers of smaller programs, including particle astrophysics. 

At the same time, he says, Fermilab feels mounting pressure to demonstrate value beyond creating knowledge. One potential additional pursuit involves using the laboratory’s unequaled capability in accelerator design and construction to build accelerators for other laboratories. Lockyer says he also sees opportunities to contribute the computing capabilities developed from decades of processing massive amounts of particle physics data to groundbreaking next-generation computing projects. “We have to dig deeper and reach out in new ways.”

In the five decades since Fermilab began, knowledge of the universe has flowered beyond anything we could have imagined in 1967. Particles and forces then unknown have become familiar, like old friends. Whole realms of inner space have opened up to us, and outer space has revealed a new dark universe to explore. Across the globe, collaborators have joined forces to extend our reach into the unknown beyond anything we can achieve separately. 

Times have changed, but Wilson would still recognize his laboratory. As it did then, Fermilab holds the same deep commitment to the science of the universe that brought it into being 50 years ago. 

Continue reading

Fermilab en español (EN)

The particle physics laboratory makes a Spanish connection.

Header:Fermilab en español

Marylu Reyes and her 12-year-old daughter live just a few miles north of Fermi National Accelerator Laboratory, in West Chicago, Illinois, a town of 27,000 residents with a significant Spanish-speaking population.

When her client, a Fermilab employee, told her the big lab down the street was hosting an event given entirely in Spanish, Reyes and her daughter excitedly marked the date.

What they saw at Fermilab's Pregúntale a un Científico—Ask a Scientist—blew them away.

“When I walked through the lab, it was just like the movies about NASA: big rooms, computers, all that equipment. You felt like you could be a part of it,” says Reyes, who heard presentations on particle accelerators, dark matter and neutrinos. “It was a great opportunity to see it — in our language.”

March’s Pregúntale a un Científico was the first time Fermilab had offered its Ask-a-Scientist, one of the lab’s mainstay public-outreach programs, in Spanish. In fact it was Reyes’ client, Griselda Lopez, who spearheaded the effort. And through the civic engagement of Fermilab’s Hispanic/Latino Forum, a resource group, the successful event, which drew nearly a hundred people, demonstrated the great interest from the surrounding Latino community in the laboratory’s work.   

Pregúntale a un Científico is just one part of Fermilab’s ongoing effort to reach Spanish speakers.

Fermilab is currently developing Spanish-language science materials for the classroom. And it has twice hosted a bilingual conference for a local organization that encourages Latina middle school girls to pursue a STEM education.

“As I was doing these outreach activities, I figured out that it’s not just about science,” said Erika Catano Mur, an Iowa State University graduate student on Fermilab’s NOvA neutrino experiment who has led Spanish-language tours at the lab. “There’s a wall that Spanish-speaking people face that you’re not always aware of. They say, ‘You tell me to go to this website, to call this person to learn more. Do they speak Spanish?’ So we're looking at what’s already out there in Spanish and what more is needed.”

Catano Mur learned English in school in her home country of Colombia, and she speaks English daily at work. Minerba Betancourt, a Fermilab scientist on the MINERvA neutrino experiment who gave presentations at Pregúntale a un Científico, started speaking English regularly only after she came to the United States for graduate school from Venezuela. She continues to speak Spanish with her family.

“I’m proof that you can do science in your second language,” Betancourt says. 

Catano Mur says she rarely does physics in Spanish, since her first language becomes her second language when it comes to physics.

“If I’m talking to another Spanish speaker at the lab, then it can come out in Spanglish, because the science terms come to me much faster in English,” she says.

When talking with nonscientists, Betancourt says, neither language is more difficult than the other. The real translation challenge is moving from jargon into plainspeak. 

It wasn’t just scientists interacting with the attendees at Pregúntale a un Científico. Nontechnical staff were also there to mingle and answer questions.

“We have a rich Spanish-speaking community at the lab—employees, graduate students and postdocs from Latin American and US institutions,” Betancourt says. “Each volunteer contributes something to the wonderful science program at Fermilab.”

The attendees came from all over—not just the surrounding suburbs. Betancourt met one family from Chicago, 40 miles away, and another who lives in Argentina and just happened to be in the area.

When it comes to the lab serving as an educational resource, it is of course nearby residents who have the most to gain, being a stone’s throw away. 

“We have a good community with a great potential for students who could be physicists and engineers,” Betancourt says. “That’s an opportunity I didn’t have — to go to a nearby lab to see what they do.”

It’s as much a chance for the parents as for the children to learn about science careers. 

“The parents are very involved. They sometimes have the idea that if you go into physics, you can be only a high school teacher and have to live a lonely life,” Catano Mur says.”“Any information beyond that is surprising.”

Her goal is to make it less so.

“The Hispanic community here has a big opportunity to get involved in science. A lab like this doesn’t exist in many parts of the world,” Catano Mur says. “A couple of science talks can get the process started.”

Reyes is already well on her way. Even before attending Pregúntale a un Científico, she assumed the role of town crier, distributing flyers about the event at local supermarkets, her daughter’s middle school and her church. It seems to have worked: She saw several friends and acquaintances there.

“I’m so happy that they did this for us. My daughter said, ‘Mom, this was a great experience.’ Reyes says. “I had heard about Fermilab, but I didn’t really know what it was. Now, we feel so welcome.”

(Version en español)

Continue reading

Fermilab en español (ES)

El laboratorio de física de partículas establece una conexión en español.

Header:Fermilab en español

Marylu Reyes y su hija de 12 años viven a unas pocas millas al norte de Fermi National Accelerator Laboratory, en West Chicago, Illinois, una ciudad de 27,000 habitantes con una población significativa de hispanohablantes.

Cuando la cliente de Reyes, una empleada de Fermilab, le contó que el gran laboratorio del vecindario estaba organizando un evento totalmente en español, Reyes y su hija apuntaron la fecha con gran entusiasmo.

Lo que vieron en Pregúntale a un Científico—Ask a Scientist—de Fermilab las cautivó.

“A medida que recorría el laboratorio, era igual que en las películas sobre la NASA: habitaciones grandes, computadoras, todos esos equipos. Sentías como si pudieras formar parte de ello,” cuenta Reyes, quien escuchó exposiciones sobre aceleradores de partículas, materia oscura y neutrinos. “Fue una gran oportunidad poder presenciarlo… ¡en nuestro idioma!”

Pregúntale a un Científico de marzo fue la primera vez que Fermilab ofreció Ask-a-Scientist, uno de sus principales programas de difusión pública del laboratorio, en idioma español. De hecho, fue la cliente de Reyes, Griselda Lopez, quien encabezó el esfuerzo. Asimismo, a través del compromiso cívico del Foro hispano/latino de Fermilab, un grupo de recursos, el exitoso evento, que atrajo a casi un centenar de personas, demostró el gran interés en el trabajo del laboratorio por parte de la comunidad latina circundante.

Pregúntale a un Científico es solo una parte del esfuerzo continuo de Fermilab para llegar a los hispanohablantes.

En la actualidad, Fermilab se encuentra desarrollando materiales de ciencia en idioma español para el salón de clases. Asimismo, ha organizado en dos oportunidades una conferencia bilingüe para una organización local que alienta a estudiantes latinas de la escuela secundaria a cursar estudios relacionados con la ciencia, la tecnología, la ingeniería y las matemáticas (STEM).

“Mientras estaba realizando estas actividades de difusión, me di cuenta de que no se trata solo de ciencia,” dijo Erika Catano Mur, una estudiante de posgrado de la Universidad Estatal de Iowa (Iowa State University) participante en el experimento NOvA sobre neutrinos de Fermilab, y quien ha guiado recorridos en idioma español dentro del laboratorio. “Existe un muro que enfrentan los hispanohablantes del cual uno no siempre es consciente. Ellos afirman: ‘Me dicen que me dirija a este sitio web para llamar a tal persona a fin de obtener más información. Y esa persona, ¿habla español?’ De modo que estamos observando lo que ya hay disponible en español y qué más se necesita.”

Catano Mur aprendió inglés en la escuela en Colombia, su país natal, y habla dicho idioma a diario en el trabajo. Minerba Betancourt, una científica de Fermilab participante en el experimento MINERvA sobre neutrinos, y quien realizó exposiciones en Pregúntale a un Científico, comenzó a hablar inglés de forma regular solo después de venir a los Estados Unidos desde Venezuela para cursar estudios de posgrado. Ella continúa hablando español con su familia.

“Soy la prueba de que se puede hacer ciencia en tu segundo idioma,” afirmó Betancourt.

Catano Mur dice que rara vez hace física en español. Por lo tanto, su primer idioma se convierte en su segundo idioma cuando se trata de física.

“Si estoy conversando con otro hispanohablante en el laboratorio, entonces podemos hacerlo en Spanglish, porque los términos científicos me vienen a la cabeza mucho más rápido en inglés,” afirma.

Al conversar con no científicos, según Betancourt, ninguno de los idiomas es más difícil que el otro. El verdadero desafío de traducción consiste en pasar los términos técnicos específicos a un léxico sencillo.

No eran solo científicos los que interactuaban con los participantes en Pregúntale a un Científico. Personal no técnico también estaba presente allí para mezclarse y responder preguntas.

“Contamos con una vasta comunidad de hispanohablantes en el laboratorio: empleados, estudiantes de posgrado y posdoctorados de instituciones latinoamericanas y estadounidenses,” contó Betancourt. “Cada voluntario aporta algo al maravilloso programa científico en Fermilab.”

Los participantes acudieron de todas partes, no solo de los suburbios aledaños. Betancourt conoció a una familia de Chicago, que vive a 40 millas de distancia, y otra que vive en Argentina que, casualmente, estaba por la zona.

Cuando se trata del laboratorio como un recurso educativo, los habitantes de los alrededores son, por supuesto, los que tienen más ventajas, ya que se encuentran a pasos del lugar.

“Disponemos de una buena comunidad con un gran potencial de estudiantes que podrían ser físicos e ingenieros,” expresa Betancourt. “Esa es una oportunidad que yo no tuve: ir a un laboratorio cercano para observar lo que hacen.”

Es una oportunidad tanto para padres como para hijos de obtener información sobre carreras científicas.

“Los padres están muy involucrados. A veces tienen la idea de que si te adentras en la física, solo podrás ser profesor de secundaria y tendrás que llevar una vida solitaria,” sostiene Catano Mur. “Cualquier información más allá de eso es sorprendente.”

Su objetivo consiste en reducir eso.

“La comunidad hispana tiene aquí una gran oportunidad de involucrarse en la ciencia. Un laboratorio como este no existe en muchas partes del mundo,” afirma Catano Mur. “Un par de conversaciones científicas puede iniciar el proceso.”

Reyes ya va por buen camino. Incluso antes de asistir a Pregúntale a un Científico, ella asumió el papel de pregonera, distribuyendo volantes acerca del evento en supermercados locales, en la escuela secundaria de su hija y en su iglesia. Parece haber funcionado: Reyes vio a varios amigos y conocidos allí.

“Estoy tan feliz de que hayan hecho esto por nosotros. Mi hija dijo: ‘Mamá, esta fue una gran experiencia,’” contó Reyes. “Había oído acerca de Fermilab pero no sabía realmente qué era. Ahora, nos sentimos muy bien recibidos.”

(English version)

Continue reading

How to clean inside the LHC

The beam pipes of the LHC need to be so clean, even air molecules count as dirt.

Cutaway image showing the two beam pipes inside the Large Hadron Collider

The Large Hadron Collider is the world’s most powerful accelerator. Inside, beams of particles sprint 17 miles around in opposite directions through a pair of evacuated beam pipes that intersect at collision points surrounded by giant particle detectors.

The inside of the beam pipes need to be spotless, which is why the LHC is thoroughly cleaned every year before it ramps up its summer operations program.

It’s not dirt or grime that clogs the LHC. Rather, it’s microscopic air molecules.

“The LHC is incredibly cold and under a strong vacuum, but it’s not a perfect vacuum,” says LHC accelerator physicist Giovanni Rumolo. “There’s a tiny number of simple atmospheric gas molecules and even more frozen to the beam pipes’ walls.”

Protons racing around the LHC crash into these floating air molecules, detaching their electrons. The liberated electrons jump after the positively charged protons but quickly crash into the beam pipe walls, depositing heat and liberating even more electrons from the frozen gas molecules there.

This process quickly turns into an avalanche, which weakens the vacuum, heats up the cryogenic system, disrupts the proton beam and dramatically lowers the efficiency and reliability of the LHC.

But the clouds of buzzing electrons inside the beam pipe possess an interesting self-healing feature, Rumolo says.

“When the chamber wall is under intense electron bombardment, the probability of it creating secondary electrons decreases and the avalanche is gradually mitigated,” he says. “Before ramping the LHC up to its full intensity, we run the machine for several days with as many low-energy protons as we can safely manage and intentionally produce electron clouds. The effect is that we have fewer loose electrons during the LHC’s physics runs.”

In other words, accelerator engineers clean the inside of the LHC a little like they would unclog a shower drain. They gradually pump the LHC full of more and more sluggish protons, which act like a scrub brush and knock off the microscopic grime clinging to the inside of the beam pipe. This loose debris is flushed out by the vacuum system. In addition, the bombardment of electrons transforms simple carbon molecules, which are still clinging to the beam pipe’s walls, into an inert and protective coating of graphite.

Cleaning the beam pipe is such an important job that there is a team of experts responsible for it (officially called the “Scrubbing Team”).

“Scrubbing is essential if we want to operate the LHC at its full potential,” Rumolo says. “It’s challenging, because there is a fine line between thoroughly cleaning the machine and accidentally dumping the beam. When we’re scrubbing, we work around the clock in the CERN Control Center to make sure the accelerator is safe and the scrubbing is working properly.”

Continue reading

Another year wiser

In honor of Fermilab’s upcoming 50th birthday, Symmetry presents physics birthday cards.

Header: Another year wiser

Some say there are five fundamental interactions: gravitational, electromagnetic, strong, weak and the exchange of birthday greetings on Facebook. But even if you prefer paper to pixels, Symmetry is here to help you celebrate another year. Try these five physics birthday cards, available as both gifs and printable PDFs.


Like two beams of particles in the Large Hadron Collider, your lives intersected. Tell a friend you’re grateful:

Have a smashing birthday!
Artwork by Corinne Mucha

Like a neutrino, they may change over time, but you still appreciate their friendship:

You're basically unstoppable. Happy Birthday!
Artwork by Corinne Mucha

Whether it's dark energy or another force that pushes them forward, it’s an honor to see them grow: ​

You expand my horizons. Happy Birthday!
Artwork by Corinne Mucha

Let them know that, like dark matter, good friends can be hard to find:​

I'm glad you're part of the observable universe. Happy Birthday!
Artwork by Corinne Mucha

And you’re so glad that, like a long-sought gravitational wave or a Higgs boson, they finally appeared:​

I'm glad I discovered you. Happy Birthday!
Artwork by Corinne Mucha

Can’t wait to send your first card? We happen to know of a laboratory with a big day coming up on June 15.

Fermilab
PO Box 500, MS 206
Batavia, IL 60510-5011

(Or reach them on Facebook.)

Print setting recommendations:

Paper Size: Letter
Scale: 100 percent

How to fold your card:

Fold your 8.5 x 11 inch paper in half on the horizontal axis, then fold in half again on the vertical axis. Voilà!

Inline 6: Another year wiser
Artwork by Sandbox Studio, Chicago
Continue reading