Think FAST
The new Fermilab Accelerator Science and Technology facility at Fermilab looks to the future of accelerator science.

Unlike most particle physics facilities, the new Fermilab Accelerator Science and Technology facility (FAST) wasn’t constructed to find new particles or explain basic physical phenomena. Instead, FAST is a kind of workshop—a space for testing novel ideas that can lead to improved accelerator, beamline and laser technologies.
Historically, accelerator research has taken place on machines that were already in use for experiments, making it difficult to try out new ideas. Tinkering with a physicist’s tools mid-search for the secrets of the universe usually isn’t a great idea. By contrast, FAST enables researchers to study pieces of future high-intensity and high-energy accelerator technology with ease.
“FAST is specifically aiming to create flexible machines that are easily reconfigurable and that can be accessed on very short notice,” says Alexander Valishev, head of department that manages FAST. “You can roll in one experiment and roll the other out in a matter of days, maybe months, without expensive construction and operation costs.”
This flexibility is part of what makes FAST a useful place for training up new accelerator scientists. If a student has an idea, or something they want to study, there’s plenty of room for experimentation.
“We want students to come and do their thesis research at FAST, and we already have a number of students working.” Valishev says. “We have already had a PhD awarded on the basis of work done at FAST, but we want more of that.”
Small ring, bright beam
FAST will eventually include three parts: an electron injector, a proton injector and a particle storage ring called the Integrable Optics Test Accelerator, or IOTA. Although it will be small compared to other rings—only 40 meters long, while Fermilab’s Main Injector has a circumference of 3 kilometers—IOTA will be the centerpiece of FAST after its completion in 2019. And it will have a unique feature: the ability to switch from being an electron accelerator to a proton accelerator and back again.
“The sole purpose of this synchrotron is to test accelerator technology and develop that tech to test ideas and theories to improve accelerators everywhere,” says Dan Broemmelsiek, a scientist in the IOTA/FAST department.
One aspect of accelerator technology FAST focuses on is creating higher-intensity or “brighter” particle beams.
Brighter beams pack a bigger particle punch. A high-intensity beam could send a detector twice as many particles as is usually possible. Such an experiment could be completed in half the time, shortening the data collection period by several years.
IOTA will test a new concept for accelerators called integrable optics, which is intended to create a more concentrated, stable beam, possibly producing higher intensity beams than ever before.
“If this IOTA thing works, I think it could be revolutionary,” says Jamie Santucci, an engineering physicist working on FAST. “It’s going to allow all kinds of existing accelerators to pack in way more beam. More beam, more data.”
Maximum energy milestone
Although the completion of IOTA is still a few years away, the electron injector will reach a milestone this summer: producing an electron beam with the energy of 300 million electronvolts (MeV).
“The electron injector for IOTA is a research vehicle in its own right,” Valishev says. It provides scientists a chance to test superconducting accelerators, a key piece of technology for future physics machines that can produce intense acceleration at relatively low power.
“At this point, we can measure things about the beam, chop it up or focus it,” Broemmelsiek says. “We can use cameras to do beam diagnostics, and there’s space here in the beamline to put experiments to test novel instrumentation concepts.”
The electron beam’s previous maximum energy of 50 MeV was achieved by passing the beam through two superconducting accelerator cavities and has already provided opportunities for research. The arrival of the 300 MeV beam this summer—achieved by sending the beam through another eight superconducting cavities—will open up new possibilities for accelerator research, with some experiments already planned to start as soon as the beam is online.
FAST forward
The third phase of FAST, once IOTA is complete, will be the construction of the proton injector.
“FAST is unique because we will specifically target creating high-intensity proton beams,” Valishev says.
This high-intensity proton beam research will directly translate to improving research into elusive particles called neutrinos, Fermilab’s current focus.
“In five to 10 years, you’ll be talking to a neutrino guy and they’ll go, ‘I don’t know what the accelerator guys did, but it’s fabulous. We’re getting more neutrinos per hour than we ever thought we would,’” Broemmelsiek says.
Creating new accelerator technology is often an overlooked area in particle physics, but the freedom to try out new ideas and discover how to build better machines for research is inherently rewarding for people who work at FAST.
“Our business is science, and we’re supposed to make science, and we work really hard to do that,” Broemmelsiek says. “But it’s also just plain ol’ fun.”
A new search for dark matter 6800 feet underground
Prototype tests of the future SuperCDMS SNOLAB experiment are in full swing.

When an extraordinarily sensitive dark matter experiment goes online at one of the world’s deepest underground research labs, the chances are better than ever that it will find evidence for particles of dark matter—a substance that makes up 85 percent of all matter in the universe but whose constituents have never been detected.
The heart of the experiment, called SuperCDMS SNOLAB, will be one of the most sensitive detectors for hypothetical dark matter particles called WIMPs, short for “weakly interacting massive particles.” SuperCDMS SNOLAB is one of two next-generation experiments (the other one being an experiment called LZ) selected by the US Department of Energy and the National Science Foundation to take the search for WIMPs to the next level, beginning in the early 2020s.
“The experiment will allow us to enter completely unexplored territory,” says Richard Partridge, head of the SuperCDMS SNOLAB group at the Kavli Institute for Particle Astrophysics and Cosmology, a joint institute of Stanford University and SLAC National Accelerator Laboratory. “It’ll be the world’s most sensitive detector for WIMPs with relatively low mass, complementing LZ, which will look for heavier WIMPs.”
The experiment will operate deep underground at Canadian laboratory SNOLAB inside a nickel mine near the city of Sudbury, where 6800 feet of rock provide a natural shield from high-energy particles from space, called cosmic rays. This radiation would not only cause unwanted background in the detector; it would also create radioactive isotopes in the experiment’s silicon and germanium sensors, making them useless for the WIMP search. That’s also why the experiment will be assembled from major parts at its underground location.
A detector prototype is currently being tested at SLAC, which oversees the efforts of the SuperCDMS SNOLAB project.
Colder than the universe
The only reason we know dark matter exists is that its gravity pulls on regular matter, affecting how galaxies rotate and light propagates. But researchers believe that if WIMPs exist, they could occasionally bump into normal matter, and these collisions could be picked up by modern detectors.
SuperCDMS SNOLAB will use germanium and silicon crystals in the shape of oversized hockey pucks as sensors for these sporadic interactions. If a WIMP hits a germanium or silicon atom inside these crystals, two things will happen: The WIMP will deposit a small amount of energy, causing the crystal lattice to vibrate, and it’ll create pairs of electrons and electron deficiencies that move through the crystal and alter its electrical conductivity. The experiment will measure both responses.
“Detecting the vibrations is very challenging,” says KIPAC’s Paul Brink, who oversees the detector fabrication at Stanford. “Even the smallest amounts of heat cause lattice vibrations that would make it impossible to detect a WIMP signal. Therefore, we’ll cool the sensors to about one hundredth of a Kelvin, which is much colder than the average temperature of the universe.”
These chilly temperatures give the experiment its name: CDMS stands for “Cryogenic Dark Matter Search.” (The prefix “Super” indicates that the experiment is more sensitive than previous detector generations.)
The use of extremely cold temperatures will be paired with sophisticated electronics, such as transition-edge sensors that switch from a superconducting state of zero electrical resistance to a normal-conducting state when a small amount of energy is deposited in the crystal, as well as superconducting quantum interference devices, or SQUIDs, that measure these tiny changes in resistance.
The experiment will initially have four detector towers, each holding six crystals. For each crystal material—silicon and germanium—there will be two different detector types, called high-voltage (HV) and interleaved Z-sensitive ionization phonon (iZIP) detectors. Future upgrades can further boost the experiment’s sensitivity by increasing the number of towers to 31, corresponding to a total of 186 sensors.

Four SuperCDMS SNOLAB iZIP detectors at the Stanford Nanofabrication Facility

Electrical readout section of SNOLAB Engineering Tower

Mixing chamber for the dilution fridge manufactured by BlueFors Cryogenics and installed in Building 33 at SLAC

Dilution fridge

Mechanical test-fit assembly of SNOLAB Engineering Tower into dilution fridge test facility in Building 33 at SLAC

SNOLAB Engineering Tower prepared for installation into dilution fridge test facility

Tsuguo Aramaki completes the assembly of the dilution fridge test facility at SLAC.

Mike Racine of SLAC inspects the SNOLAB Engineering Tower installed in the dilution fridge test facility.

Tsuguo Aramaki of SLAC performs a diagnostic checkout of a SNOLAB Tower installed in the dilution fridge test facility.

Diagnostic test chips prepared for installation into the SNOLAB Engineering Tower

Mike Racine of SLAC installs the SNOLAB Engineering Tower into the dilution fridge test facility.

Tsuguo Aramaki of SLAC builds the detector stack on the SNOLAB Engineering Tower.

Paul Brink of SLAC wrangles the SNOLAB Engineering Tower.

Mike Racine and Paul Brink of SLAC install the SNOLAB Engineering Tower into the dilution fridge test facility.

A display shows the first photons from the SuperCDMS SNOLAB HV detector run in the SLAC dilution fridge test facility.

SNOLAB Engineering Tower assembled by Tsuguo Aramaki (SLAC) and Xuji Zhao (Texas A&M)

Tsuguo Aramaki (SLAC), Caleb Fink (UCB), Sam Watkins (UCB) and Matt Pyle (UCB)

SNOLAB iZIP detector fabricated at Texas A&M university and packaged by SLAC's Matt Cherry for testing at UMN Minneapolis

SNOLAB prototype HV detector fabricated and packaged by Matt Cherry (SLAC) in SNOLAB prototype hardware

High-density Vacuum Interface Board developed at Fermilab for readout of cryogenic detectors

A SNOLAB Engineering Tower is installed in the dilution fridge to test cryogenic flex-cable readout configurations.
Working hand in hand
The work under way at SLAC serves as a system test for the future SuperCDMS SNOLAB experiment. Researchers are testing the four different detector types, the way they are integrated into towers, their superconducting electrical connectors and the refrigerator unit that cools them down to a temperature of almost absolute zero.
“These tests are absolutely crucial to verify the design of these new detectors before they are integrated in the experiment underground at SNOLAB,” says Ken Fouts, project manager for SuperCDMS SNOLAB at SLAC. “They will prepare us for a critical DOE review next year, which will determine whether the project can move forward as planned.” DOE is expected to cover about half of the project costs, with the other half coming from NSF and a contribution from the Canadian Foundation for Innovation.
Important work is progressing at all partner labs of the SuperCDMS SNOLAB project. Fermi National Accelerator Laboratory is responsible for the cryogenics infrastructure and the detector shielding—both will enable searching for faint WIMP signals in an environment dominated by much stronger unwanted background signals. Pacific Northwest National Laboratory will lend its expertise in understanding background noise in highly sensitive precision experiments. A number of US universities are involved in various aspects of the project, including detector fabrication, tests, data analysis and simulation.
The project also benefits from international partnerships with institutions in Canada, France, the UK and India. The Canadian partners are leading the development of the experiment’s data acquisition and will provide the infrastructure at SNOLAB.
“Strong partnerships create a lot of synergy and make sure that we’ll get the best scientific value out of the project,” says Fermilab’s Dan Bauer, spokesperson of the SuperCDMS collaboration, which consists of 109 scientists from 22 institutions, including numerous universities. “Universities have lots of creative students and principal investigators, and their talents are combined with the expertise of scientists and engineers at the national labs, who are used to successfully manage and build large projects.”
SuperCDMS SNOLAB will be the fourth generation of experiments, following CDMS-I at Stanford, CDMS-II at the Soudan mine in Minnesota, and a first version of SuperCDMS at Soudan, which completed operations in 2015.
“Over the past 20 years we’ve been pushing the limits of our detectors to make them more and more sensitive for our search for dark matter particles,” says KIPAC’s Blas Cabrera, project director of SuperCDMS SNOLAB. “Understanding what constitutes dark matter is as fundamental and important today as it was when we started, because without dark matter none of the known structures in the universe would exist—no galaxies, no solar systems, no planets and no life itself.”
Our clumpy cosmos
The Dark Energy Survey reveals the most accurate measurement of dark matter structure in the universe.

Imagine planting a single seed and, with great precision, being able to predict the exact height of the tree that grows from it. Now imagine traveling to the future and snapping photographic proof that you were right.
If you think of the seed as the early universe, and the tree as the universe the way it looks now, you have an idea of what the Dark Energy Survey (DES) collaboration has just done. In a presentation today at the American Physical Society Division of Particles and Fields meeting at the US Department of Energy’s (DOE) Fermi National Accelerator Laboratory, DES scientists will unveil the most accurate measurement ever made of the present large-scale structure of the universe.
These measurements of the amount and “clumpiness” (or distribution) of dark matter in the present-day cosmos were made with a precision that, for the first time, rivals that of inferences from the early universe by the European Space Agency’s orbiting Planck observatory. The new DES result (the tree, in the above metaphor) is close to “forecasts” made from the Planck measurements of the distant past (the seed), allowing scientists to understand more about the ways the universe has evolved over 14 billion years.
“This result is beyond exciting,” says Scott Dodelson of Fermilab, one of the lead scientists on this result. “For the first time, we’re able to see the current structure of the universe with the same clarity that we can see its infancy, and we can follow the threads from one to the other, confirming many predictions along the way.”
Most notably, this result supports the theory that 26 percent of the universe is in the form of mysterious dark matter and that space is filled with an also-unseen dark energy, which is causing the accelerating expansion of the universe and makes up 70 percent.
Paradoxically, it is easier to measure the large-scale clumpiness of the universe in the distant past than it is to measure it today. In the first 400,000 years following the Big Bang, the universe was filled with a glowing gas, the light from which survives to this day. Planck’s map of this cosmic microwave background radiation gives us a snapshot of the universe at that very early time. Since then, the gravity of dark matter has pulled mass together and made the universe clumpier over time. But dark energy has been fighting back, pushing matter apart. Using the Planck map as a start, cosmologists can calculate precisely how this battle plays out over 14 billion years.
“The DES measurements, when compared with the Planck map, support the simplest version of the dark matter/dark energy theory,” says Joe Zuntz, of the University of Edinburgh, who worked on the analysis. “The moment we realized that our measurement matched the Planck result within 7 percent was thrilling for the entire collaboration.”

This map of dark matter is made from gravitational lensing measurements of 26 million galaxies in the Dark Energy Survey. The map covers about 1/30th of the entire sky and spans several billion light-years in extent. Red regions have more dark matter than average, blue regions less dark matter.
The primary instrument for DES is the 570-megapixel Dark Energy Camera, one of the most powerful in existence, able to capture digital images of light from galaxies eight billion light-years from Earth. The camera was built and tested at Fermilab, the lead laboratory on the Dark Energy Survey, and is mounted on the National Science Foundation’s 4-meter Blanco telescope, part of the Cerro Tololo Inter-American Observatory in Chile, a division of the National Optical Astronomy Observatory. The DES data are processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.
Scientists on DES are using the camera to map an eighth of the sky in unprecedented detail over five years. The fifth year of observation will begin in August. The new results released today draw from data collected only during the survey’s first year, which covers 1/30th of the sky.
“It is amazing that the team has managed to achieve such precision from only the first year of their survey,” says National Science Foundation Program Director Nigel Sharp. “Now that their analysis techniques are developed and tested, we look forward with eager anticipation to breakthrough results as the survey continues.”
DES scientists used two methods to measure dark matter. First, they created maps of galaxy positions as tracers, and second, they precisely measured the shapes of 26 million galaxies to directly map the patterns of dark matter over billions of light-years using a technique called gravitational lensing.
To make these ultra-precise measurements, the DES team developed new ways to detect the tiny lensing distortions of galaxy images, an effect not even visible to the eye, enabling revolutionary advances in understanding these cosmic signals. In the process, they created the largest guide to spotting dark matter in the cosmos ever drawn (see image). The new dark matter map is 10 times the size of the one DES released in 2015 and will eventually be three times larger than it is now.
“It’s an enormous team effort and the culmination of years of focused work,” says Erin Sheldon, a physicist at the DOE’s Brookhaven National Laboratory, who co-developed the new method for detecting lensing distortions.
These results and others from the first year of the Dark Energy Survey will be released today online and announced during a talk by Daniel Gruen, NASA Einstein fellow at the Kavli Institute for Particle Astrophysics and Cosmology at DOE’s SLAC National Accelerator Laboratory, at 5 pm Central time. The talk is part of the APS Division of Particles and Fields meeting at Fermilab and will be streamed live.
The results will also be presented by Kavli fellow Elisabeth Krause of the Kavli Insitute for Particle Astrophysics and Cosmology at SLAC at the TeV Particle Astrophysics Conference in Columbus, Ohio, on Aug. 9; and by Michael Troxel, postdoctoral fellow at the Center for Cosmology and AstroParticle Physics at Ohio State University, at the International Symposium on Lepton Photon Interactions at High Energies in Guanzhou, China, on Aug. 10. All three of these speakers are coordinators of DES science working groups and made key contributions to the analysis.
“The Dark Energy Survey has already delivered some remarkable discoveries and measurements, and they have barely scratched the surface of their data,” says Fermilab Director Nigel Lockyer. “Today’s world-leading results point forward to the great strides DES will make toward understanding dark energy in the coming years.”
A version of this article was published by Fermilab.
Tuning in for science
The sprawling Square Kilometer Array radio telescope hunts signals from one of the quietest places on earth.

When you think of radios, you probably think of noise. But the primary requirement for building the world’s largest radio telescope is keeping things almost perfectly quiet.
Radio signals are constantly streaming to Earth from a variety of sources in outer space. Radio telescopes are powerful instruments that can peer into the cosmos—through clouds and dust—to identify those signals, picking them up like a signal from a radio station. To do it, they need to be relatively free from interference emitted by cell phones, TVs, radios and their kin.
That’s one reason the Square Kilometer Array is under construction in the Great Karoo, 400,000 square kilometers of arid, sparsely populated South African plain, along with a component in the Outback of Western Australia. The Great Karoo is also a prime location because of its high altitude—radio waves can be absorbed by atmospheric moisture at lower altitudes. SKA currently covers some 1320 square kilometers of the landscape.
Even in the Great Karoo, scientists need careful filtering of environmental noise. Effects from different levels of radio frequency interference (RFI) can range from “blinding” to actually damaging the instruments. Through South Africa’s Astronomy Geographic Advantage Act, SKA is working toward “radio protection,” which would dedicate segments of the bandwidth for radio astronomy while accommodating other private and commercial RF service requirements in the region.
“Interference affects observational data and makes it hard and expensive to remove or filter out the introduced noise,” says Bernard Duah Asabere, Chief Scientist of the Ghana team of the African Very Long Baseline Interferometry Network (African VLBI Network, or AVN), one of the SKA collaboration groups in eight other African nations participating in the project.
SKA “will tackle some of the fundamental questions of our time, ranging from the birth of the universe to the origins of life,” says SKA Director-General Philip Diamond. Among the targets: dark energy, Einstein’s theory of gravity and gravitational waves, and the prevalence of the molecular building blocks of life across the cosmos.
SKA-South Africa can detect radio spectrum frequencies from 350 megahertz to 14 gigahertz. Its partner Australian component will observe the lower-frequency scale, from 50 to 350 megahertz. Visible light, for comparison, has frequencies ranging from 400 to 800 million megahertz. SKA scientists will process radiofrequency waves to form a picture of their source.
A precursor instrument to SKA called MeerKAT (named for the squirrel-sized critters indigenous to the area), is under construction in the Karoo. This array of 16 dishes in South Africa achieved first light on June 19, 2016. MeerKAT focused on 0.01 percent of the sky for 7.5 hours and saw 1300 galaxies—nearly double the number previously known in that segment of the cosmos.
Since then, MeerKAT met another milestone with 32 integrated antennas. MeerKat will also reach its full array of 64 dishes early next year, making it one of the world’s premier radio telescopes. MeerKAT will eventually be integrated into SKA Phase 1, where an additional 133 dishes will be built. That will bring the total number of antennas for SKA Phase I in South Africa to 197 by 2023. So far, 32 dishes are fully integrated and are being commissioned for science operations.
On completion of SKA 2 by 2030, the detection area of the receiver dishes will exceed 1 square kilometer, or about 11,000 square feet. Its huge size will make it 50 times more sensitive than any other radio telescope. It is expected to operate for 50 years.
SKA is managed by a 10-nation consortium, including the UK, China, India and Australia as well as South Africa, and receives support from another 10 countries, including the US. The project is headquartered at Jodrell Bank Observatory in the UK.
The full SKA will use radio dishes across Africa and Australia, and collaboration members say it will have a farther reach and more detailed images than any existing radio telescope.
In preparation for the SKA, South Africa and its partner countries developed AVN to establish a network of radiotelescopes across the African continent. One of its projects is the refurbishing of redundant 30-meter-class antennas, or building new ones across the partner countries, to operate as networked radio telescopes.
The first project of its kind is the AVN Ghana project, where an idle 32-meter diameter dish has been refurbished and revamped with a dual receiver system at 5 and 6.7 gigahertz central frequencies for use as a radio telescope. The dish was previously owned and operated by the government and the company Vodafone Ghana as a telecommunications facility. Now it will explore celestial objects such as extragalactic nebulae, pulsars and other RF sources in space, such as molecular clouds, called masers.
Asabere’s group will be able to tap into areas of SKA’s enormous database (several supercomputers’ worth) over the Internet. So will groups in Botswana, Kenya, Madagascar, Mauritius, Mozambique, Namibia and Zambia. SKA is also offering extensive outreach in participating countries and has already awarded 931 scholarships, fellowships and grants.
Other efforts in Ghana include introducing astronomy in the school curricula, training students in astronomy and related technologies, doing outreach in schools and universities, receiving visiting students at the telescope site and hosting programs such as the West African International Summer School for Young Astronomers taking place this week.
Asabere, who achieved his advanced degrees in Sweden (Chalmers University of Technology) and South Africa (University of Johannesburg), would like to see more students trained in Ghana, and would like get more researchers on board. He also hopes for the construction of the needed infrastructure, more local and foreign partnerships and strong governmental backing.
“I would like the opportunity to practice my profession on my own soil,” he says.
That day might not be far beyond the horizon. The Leverhulme-Royal Society Trust and Newton Fund in the UK are co-funding extensive human capital development programs in the SKA-AVN partner countries. A seven-member Ghanaian team, for example, has undergone training in South Africa and has been instructed in all aspects of the project, including the operation of the telescope.
Several PhD students and one MSc student from Ghana have received SKA-SA grants to pursue further education in astronomy and engineering. The Royal Society has awarded funding in collaboration with Leeds University to train two PhDs and 60 young aspiring scientists in the field of astrophysics.
Based on the success of the Leverhulme-Royal Society program, a joint UK-South Africa Newton Fund intervention (DARA—the Development in Africa with Radio Astronomy) has since been initiated in other partner countries to grow high technology skills that could lead to broader economic development in Africa.
As SKA seeks answers to complex questions over the next five decades, there should be plenty of opportunities for science throughout the Southern Hemisphere. Though it lives in one of the quietest places, SKA hopes to be heard loud and clear.
An underground groundbreaking
A physics project kicks off construction a mile underground.

For many government officials, groundbreaking ceremonies are probably old hat—or old hardhat. But how many can say they’ve been to a groundbreaking that’s nearly a mile underground?
A group of dignitaries, including a governor and four members of Congress, now have those bragging rights. On July 21, they joined scientists and engineers 4850 feet beneath the surface at the Sanford Underground Research Facility to break ground on the Long-Baseline Neutrino Facility (LBNF).
LBNF will house massive, four-story-high detectors for the Deep Underground Neutrino Experiment (DUNE) to learn more about neutrinos—invisible, almost massless particles that may hold the key to how the universe works and why matter exists. Fourteen shovels full of dirt marked the beginning of construction for a project that could be, well, groundbreaking.
The Sanford Underground Research Facility in Lead, South Dakota resides in what was once the deepest gold mine in North America, which has been repurposed as a place for discovery of a different kind.
“A hundred years ago, we mined gold out of this hole in the ground. Now we’re going to mine knowledge,” said US Representative Kristi Noem of South Dakota in an address at the groundbreaking.
Transforming an old mine into a lab is more than just a creative way to reuse space. On the surface, cosmic rays from the sun constantly bombard us, causing cosmic noise in the sensitive detectors scientists use to look for rare particle interactions. But underground, shielded by nearly a mile of rock, there’s cosmic quiet. Cosmic rays are rare, making it easier for scientists to see what’s going on in their detectors without being clouded by interference.
Going down?
It may be easier to analyze data collected underground, but entering the subterranean science facility can be a chore. Nearly 60 people took a trip underground to the groundbreaking site, requiring some careful elevator choreography.
Before venturing into the deep below, reporters and representatives alike donned safety glasses, hardhats and wearable flashlights. They received two brass tags engraved with their names—one to keep and another to hang on a corkboard—a process called “brassing in.” This helps keep track of who’s underground in case of emergency.
The first group piled into the open-top elevator, known as a cage, to begin the descent. As the cage glides through a mile of mountain, it’s easy to imagine what it must have been like to be a miner back when Sanford Lab was the Homestake Mine. What’s waiting below may have changed, but the method of getting there hasn’t: The winch lowering the cage at 500-feet-a-minute is 80 years old and still works perfectly.
The ride to the 4850-level takes about 10 minutes in the cramped cage—it fits 35, but even with 20 people it feels tight. Water drips in through the ceiling as the open elevator chugs along, occasionally passing open mouths in the rock face of drifts once mined for gold.
“When you go underground, you start to think ‘It has never rained in here. And there’s never been daylight,’” says Tim Meyer, Chief Operating Officer of Fermilab, who attended the groundbreaking. “When you start thinking about being a mile below the surface, it just seems weird, like you’re walking through a piece of Swiss cheese.”
Where the cage stops at the 4850-level would be the destination of most elevator occupants on a normal day, since the shaft ends near the entrance of clean research areas housing Sanford Lab experiments. But for the contingent traveling to the future site of LBNF/DUNE on the other end of the mine, the journey continued, this time in an open-car train. It’s almost like a theme-park ride as the motor (as it’s usually called by Sanford staff) clips along through a tunnel, but fortunately, no drops or loop-the-loops are involved.
“The same rails now used to transport visitors and scientists were once used by the Homestake miners to remove gold from the underground facility,” says Jim Siegrist, Associate Director of High Energy Physics at the Department of Energy. “During the ride, rock bolts and protective screens attached to the walls were visible by the light of the headlamp mounted on our hardhats.”
After a 15-minute ride, the motor reached its destination and it was business as usual for a groundbreaking ceremony: speeches, shovels and smiling for photos. A fresh coat of white paint (more than 100 gallons worth) covered the wall behind the officials, creating a scene that almost could have been on the surface.
“Celebrating the moment nearly a mile underground brought home the enormity of the task and the dedication required for such precise experiments,” says South Dakota Governor Dennis Daugaard. “I know construction will take some time, but it will be well worth the wait for the Sanford Underground Research Facility to play such a vital role in one of the most significant physics experiments of our time."
What’s the big deal?
The process to reach the groundbreaking site is much more arduous than reaching most symbolic ceremonies, so what would possess two senators, two representatives, a White House representative, a governor and delegates from three international science institutions (to mention a few of the VIPs) to make the trip? Only the beginning of something huge—literally.
“This milestone represents the start of construction of the largest mega-science project in the United States,” said Mike Headley, executive director of Sanford Lab.
The 14 shovelers at the groundbreaking made the first tiny dent in the excavation site for LBNF, which will require the extraction of more than 870,000 tons of rock to create huge caverns for the DUNE detectors. These detectors will catch neutrinos sent 800 miles through the earth from Fermi National Accelerator Laboratory in the hopes that they will tell us something more about these strange particles and the universe we live in.
“We have the opportunity to see truly world-changing discovery,” said US Representative Randy Hultgren of Illinois. “This is unique—this is the picture of incredible discovery and experimentation going into the future.”
Angela Fava: studying neutrinos around the globe
This experimental physicist has followed the ICARUS neutrino detector from Gran Sasso to Geneva to Chicago.

Physicist Angela Fava has been at the enormous ICARUS detector’s side for over a decade. As an undergraduate student in Italy in 2006, she worked on basic hardware for the neutrino hunting experiment: tightening bolts and screws, connecting and reconnecting cables, learning how the detector worked inside and out.
ICARUS (short for Imaging Cosmic And Rare Underground Signals) first began operating for research in 2010, studying a beam of neutrinos created at European laboratory CERN and launched straight through the earth hundreds of miles to the detector’s underground home at INFN Gran Sasso National Laboratory.
In 2014, the detector moved to CERN for refurbishing, and Fava relocated with it. In June ICARUS began a journey across the ocean to the US Department of Energy’s Fermi National Accelerator Laboratory to take part in a new neutrino experiment. When it arrives today, Fava will be waiting.
Fava will go through the installation process she helped with as a student, this time as an expert.
Journey to ICARUS
As a child growing up between Venice and the Alps, Fava always thought she would pursue a career in math. But during a one-week summer workshop before her final year of high school in 2000, she was drawn to experimental physics.
At the workshop, she realized she had more in common with physicists. Around the same time, she read about new discoveries related to neutral, rarely interacting particles called neutrinos. Scientists had recently been surprised to find that the extremely light particles actually had mass and that different types of neutrinos could change into one another. And there was still much more to learn about the ghostlike particles.
At the start of college in 2001, Fava immediately joined the University of Padua neutrino group. For her undergraduate thesis research, she focused on the production of hadrons, making measurements essential to studying the production of neutrinos. In 2004, her research advisor Alberto Guglielmi and his group joined the ICARUS collaboration, and she’s been a part of it ever since.
Fava jests that the relationship actually started much earlier: “ICARUS was proposed for the first time in 1983, which is the year I was born. So we are linked from birth.”
Fava remained at the University of Padua in the same research group for her graduate work. During those years, she spent about half of her time at the ICARUS detector, helping bring it to life at Gran Sasso.
Once all the bolts were tightened and the cables were attached, ICARUS scientists began to pursue their goal of using the detector to study how neutrinos change from one type to another.
During operation, Fava switched gears to create databases to store and log the data. She wrote code to automate the data acquisition system and triggering, which differentiates between neutrino events and background such as passing cosmic rays. “I was trying to take part in whatever activity was going on just to learn as much as possible,” she says.
That flexibility is a trait that Claudio Silverio Montanari, the technical director of ICARUS, praises. “She has a very good capability to adapt,” he says. “Our job, as physicists, is putting together the pieces and making the detector work.”
Changing it up
Adapting to changing circumstances is a skill both Fava and ICARUS have in common. When scientists proposed giving the detector an update at CERN and then using it in a suite of neutrino experiments at Fermilab, Fava volunteered to come along for the ride.
Once installed and operating at Fermilab, ICARUS will be used to study neutrinos from a source a few hundred meters away from the detector. In its new iteration, ICARUS will search for sterile neutrinos, a hypothetical kind of neutrino that would interact even more rarely than standard neutrinos. While hints of these low-mass particles have cropped up in some experiments, they have not yet been detected.
At Fermilab, ICARUS also won’t be buried below more than half a mile of rock, a feature of the INFN setup that shielded it from cosmic radiation from space. That means the triggering system will play an even bigger role in this new experiment, Fava says.
“We have a great challenge ahead of us.” She’s up to the task.
Turning plots into stained glass
Hubert van Hecke, a heavy-ion physicist, transforms particle physics plots into works of art.

At first glance, particle physicist Hubert van Hecke’s stained glass windows simply look like unique pieces of art. But there is much more to them than pretty shapes and colors. A closer look reveals that his creations are actually renditions of plots from particle physics experiments.
Van Hecke learned how to create stained glass during his undergraduate years at Louisiana State University. “I had an artistic background—my father was a painter, so I thought, if I need a humanities credit, I'll just sign up for this,” van Hecke recalls. “So in order to get my physics’ bachelors, I took stained glass.”
Over the course of two semesters, van Hecke learned how to cut pieces of glass from larger sheets, puzzle them together, then solder and caulk the joints. “There were various assignments that gave you an enormous amount of elbow room,” he says. “One of them was to do something with Fibonacci numbers, and one was pick your favorite philosopher and made a window related to their work.”
Van Hecke continued to create windows and mirrors throughout graduate school but stopped for many years while working as a full-time heavy-ion physicist at Los Alamos National Laboratory and raising a family. Only recently did he return to his studio—this time, to create pieces inspired by physics.
“I had been thinking about designs for a long time—then it struck me that occasionally, you see plots that are interesting, beautiful shapes,” van Hecke says. “So I started collecting pictures as I saw them.”








His first plot-based window, a rectangle-shaped piece with red, orange and yellow glass, was inspired by the results of a neutrino flavor oscillation study from the MiniBooNE experiment at Fermi National Accelerator Laboratory. He created two pieces after that, one from a plot generated during the hunt for the Higgs boson at the Tevatron, also at Fermilab and the other based on an experiment with quarks and gluons.
According to van Hecke, what inspires him about these plots is “purely the shapes.”
“In terms of the physics, it's what I run across—for example, I see talks about heavy ion physics, elementary particle physics, and neutrinos, [but] I haven't really gone out and searched in other fields,” he says. “Maybe there are nice plots in biology or astronomy.”
Although van Hecke has not yet displayed his pieces publicly, if he does one day, he plans to include explanations for the phenomena the plots illustrate, such as neutrinos and the Standard Model, as a unique way to communicate science.
But before that, van Hecke plans to create more stained glass windows. As of two months ago, he is semiretired—and in between runs to Fermilab, where he is helping with the effort to use Argonne National Laboratory's SeaQuest experiment to search for dark photons, he hopes to spend more time in the studio creating the pieces left on the drawing board, which include plots found in experiments investigating the Standard Model, neutrinoless double decay and dark matter interactions.
“I hope to make a dozen or more,” he says. “As I bump into plots, I'll collect them and hopefully, turn them all into windows.”











Watch the underground groundbreaking
This afternoon, watch a livestream of the start of excavation for the future home of the Deep Underground Neutrino Experiment.

Today in South Dakota, dignitaries, scientists and engineers will mark the start of construction of the future home of America's flagship neutrino experiment with a groundbreaking ceremony.
Participants will hold shovels and give speeches. But this will be no ordinary groundbreaking. It will take place a mile under the earth at Sanford Underground Research Facility, the deepest underground physics lab in the United States.
The groundbreaking will celebrate the beginning of excavation for the Long-Baseline Neutrino Facility, which will house the Deep Underground Neutrino Experiment. When complete, LBNF/DUNE will be the largest experiment ever built in the US to study the properties of mysterious particles called neutrinos. Unlocking the mysteries of these particles could help explain more about how the universe works and why matter exists at all.
Watch the underground groundbreaking at 2:20 p.m. Mountain Time (3:20 p.m. Central) via livestream.